首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根据分布式驱动电动汽车电机转矩可独立控制、轮胎纵向力可灵活分配的特点,通过控制轮胎纵向力产生附加横摆力矩的方法提高车辆的横摆稳定性。设计了分层控制器对车辆横摆稳定性进行研究,上层控制器利用滑模控制方法计算保持车辆稳定的附加横摆力矩;下层控制器分别利用液压差动制动分配方法与平均分配方法分配附加横摆力矩。基于Matlab/Smulink与CarSim仿真环境,选取双移线路面进行车辆横摆稳定性仿真。研究结果表明:施加控制器作用后,可使车辆横摆角速度较好地跟随理想值并将质心侧偏角控制在2. 5°以内,车辆具有较好的轨迹保持能力与行驶稳定性。两种力矩分配方法均能得到较好的控制效果,其中平均分配方法控制效果更优。  相似文献   

2.
为提高四轮独立驱动电动汽车横摆稳定性,在考虑纵向车速控制的基础上设计了直接横摆力矩控制策略。该控制策略由上下两层组成,上层控制器为基于车辆运行状态反馈的附加横摆力矩控制器,其控制方式为通过实际反馈的车辆状态参数与参考值对比,设计线性二次型调节器(LQR)计算目标附加横摆力矩。下层控制器为基于路面附着条件及前后轴荷比的轮毂电机转矩分配控制器。通过CarSim与Simulink建立联合仿真模型,选择双移线和正弦输入2种工况进行仿真试验。结果表明:所设计的控制策略能够使车辆质心侧偏角和横摆角速度较好地跟随参考值,可有效避免车辆侧滑失稳,提高车辆横摆稳定性和行驶安全性;与PID控制相比,LQR控制能够更有效地抑制横摆角速度振荡峰值。  相似文献   

3.
为了降低四轮独立驱动电动汽车在复杂路面上直线行驶时跑偏以及车轮打滑对汽车行驶操纵稳定性产生的不良影响,提出了一种以开关磁阻电机为驱动核心,采用模糊趋近律理论对控制参数进行实时修正的转矩协调控制策略。该策略由模糊PID控制器计算汽车行驶力矩,由滑模变结构控制计算纠正车辆跑偏的附加横摆力矩以及车轮打滑时的防滑力矩。基于该控制策略搭建的仿真模型包含了车速控制器、横摆运动控制器以及防滑控制器,并协调分配到各个车轮上。将Matlab/Simulink中搭建的电机驱动模型与Carsim中搭建的整车模型进行联合仿真,与无控制下的仿真结果对比表明,转矩协调控制可快速将车速、横摆角速度和车轮滑转率控制在理想值附近,较好地提升了直线行驶稳定性。  相似文献   

4.
针对分布式驱动电动车过驱动系统存在的冗余现象,以带有主动前轮转向系统的四轮轮毂电机驱动电动汽车为研究对象,设计了执行器故障后的容错控制算法。容错控制器采用集成控制结构,上层为运动跟踪层,基于模型预测控制算法,得到车辆跟踪期望状态所需总的力与力矩;下层为重构控制分配器,针对驱动电机的多种故障情况,以整车稳定性和安全性为目标制定重构控制分配率。通过实验表明,在高速高附的仿真工况下,面临多种执行器故障模式时,相比无控制的车辆,处于容错控制算法控制下的车辆横摆角速度最大值由0.3 rad/s降低到0.1 rad/s,质心侧偏角由0.03 rad降低到0.015 rad,显著提高了车辆的横摆稳定性与安全性能。  相似文献   

5.
为改善高速转弯工况时的汽车稳定性,研究了基于电控液压制动系统的汽车稳定性多目标协同控制方法。考虑汽车纵向、侧向、横摆、侧倾运动,建立4自由度非线性汽车动力学模型;用AMESim软件建立汽车电控液压制动系统模型,研制台架验证模型的正确性。以电控液压制动系统为执行机构,应用差动制动原理分配制动力矩;以横摆角速度和横向载荷转移率为控制目标,分别设计了单目标的汽车横向稳定性和侧倾稳定性控制策略,以及多目标协同的汽车稳定性LQR控制策略。选取J-Turn及Worst-Case典型工况进行数值仿真,对比分析了多目标协同控制策略对不同行驶工况的适用性。结果表明:基于电控液压制动系统的多目标汽车稳定性协同控制策略能明显提高汽车的抗横摆能力,有效防止汽车侧翻。  相似文献   

6.
针对无人车辆轨迹跟踪问题,为兼顾车辆轨迹跟踪和横摆稳定的双控制目标,提出了一种无人车辆轨迹跟踪与横摆稳定协调控制策略。根据车辆轨迹跟踪模型,基于快速幂次趋近律设计了车辆轨迹跟踪滑模控制器,旨在通过无人车辆自主转向控制跟踪参考轨迹。同时,利用滑模算法设计了车辆横摆稳定控制器,通过横摆力矩控制跟踪参考横摆角速度。考虑到横摆稳定控制器中横向车速未知的情况,设计了横向车速滑模观测器,从而为横摆稳定控制器提供信息输入。此外,利用横摆力矩控制量设计了前轮转向角补偿模块,通过轨迹跟踪和横摆稳定控制器的协调,进一步修正轨迹跟踪精度。利用CarSim和Simulink平台搭建了联合仿真模型。仿真结果表明:所提出的轨迹跟踪与横摆稳定协调控制策略能够实现轨迹跟踪,并兼顾车辆的横摆稳定性。  相似文献   

7.
为了解决四轮转向(FWS)和主动驱动控制(ADC)2种并存底盘控制系统的潜在冲突问题,进一步提高车辆的横向稳定性,基于博弈论,提出了一种开环信息模式下转向与行驶稳定性控制系统的协同控制策略。在博弈论架构内,将四轮转向(FWS)和主动驱动控制(ADC)2个相关控制系统视为2个博弈者,采用微分博弈模型对2个子系统的动态交互进行建模和求解。为了实现协同控制策略,采用了一种权值可调节的车轮转矩分配方法。为了验证协同控制策略的有效性,进行了Carsim/Simulink联合仿真测试。仿真结果表明:基于博弈论的协同控制策略可以合理协调四轮转向(FWS)和主动驱动控制(ADC)2个相关控制系统的控制权限,有效提高车辆的横向稳定性。  相似文献   

8.
为了保证电动轮汽车在高速时转向盘角阶跃工况下的操纵稳定性与行驶安全性,对电动助力转向(electric power steering,EPS)与直接横摆力矩控制(direct yaw moment control,DYC)开展联合研究,并提出一种新型的电动轮汽车EPS与DYC的协调控制方法:根据横摆角速度与质心侧偏角等车辆运动参数,经上层控制器滑模变结构控制获取协调控制权重系数K和附加横摆力矩,通过协调控制权重系数K对EPS输出的转向助力矩进行修正,同时由附加横摆力矩对4轮的纵向力进行DYC分配。利用Car Sim软件和Matlab/Simulink软件分别建立整车机械动力学模型和整车协调控制模型,将两模型联立后开展联合仿真。仿真结果表明:将EPS与DYC进行协调控制,不仅可显著提高电动轮汽车在高速时转向盘角阶跃工况下的方向稳定性,而且通过协调权重系数K适当削弱了转向助力矩,可避免在高速工况下由于驾驶员心理紧张而造成的误操作。  相似文献   

9.
针对驾驶员因疲劳、分心以及横向风等因素,无意识地使车辆偏离车道线的问题,提出了一种通过固定的共驾系数实现辅助驾驶系统与驾驶员之间人机共驾的车道保持驾驶辅助系统研究方法。为了模拟驾驶员分心、疲劳状态,建立了驾驶员模型。在驾驶员模型的基础上,采用分层控制方法设计车道保持驾驶辅助系统。上层控制器利用模型预测控制方法设计转向角矫正策略;下层控制器根据上层控制器计算的期望横摆力矩对车辆进行防侧翻稳定性控制。搭建CarSim与Matlab/Simulink联合仿真平台,设计不同行驶工况,并分别采用人工驾驶和辅助驾驶2种方式进行仿真试验,仿真结果表明:无论在高速、低速或者低附着系数路面,当人工驾驶的车辆偏离车道中心线时,驾驶辅助系统均能及时矫正车辆的行驶方向,保证车辆稳定地跟踪车道线。  相似文献   

10.
为提高四轮独立驱动电动汽车(4WIDEV)行驶中的稳定性,提出以优化轮胎负荷率为目的,应用二次规划理论的驱动力矩分配方法。设计驱动力矩控制策略,对比规则分配、优化规则分配与二次规划分配方法,在CarSim与Simulink联合仿真平台中建立4WIDEV整车模型,选取方向盘转角为增幅正弦信号的工况、加速单移线工况,将二次规划分配方法与优化后的规则分配方法进行对比实验。结果表明:采用二次规划理论的驱动力矩分配方法能够更好地降低轮胎负荷率,有效提升轮胎的稳定裕度,进一步提高车辆行驶的安全性。  相似文献   

11.
为实现分布式驱动电动车的自适应巡航控制(ACC)功能,基于Matlab/Simulink搭建ACC控制策略,采用分层控制方法,首先设计上层控制器,根据目标车辆运动状态信息分别计算巡航和跟车模式下的期望加速度,然后根据不同模式间的切换逻辑和下层控制器,计算对应模式下的四轮驱动力矩和制动压力,最后通过CarSim和Matlab/Simulink联合仿真进行模型验证。验证结果表明:该模型可以在巡航和跟车结合的综合工况下实现良好的自适应巡航控制。  相似文献   

12.
在建立驾驶员模型、差动转向系统及整车机电系统耦合动力学模型的基础上,考虑了系统存在的不确定因素,分析了驱动转矩和横摆力矩之间的耦合关系。以理想横摆角速度为控制目标,研究了融合模糊逻辑和滑模变结构控制的电动轮汽车差动转向稳定性控制策略。通过模糊逻辑确定滑模趋近律在不同状态下的控制量,以补偿被控系统的不确定性和非线性的影响。仿真结果表明:所设计的稳定性控制器不仅可以有效地解决滑模变结构控制在高频下的抖振问题,而且在不同路面附着系数、不同车速以及侧向风的干扰下均能保证系统具有良好的稳定性。  相似文献   

13.
针对匹配机械弹性电动轮(MEEW)车辆的横摆稳定性控制问题,提出一种基于主动前轮转向(AFS)与直接横摆力矩控制(DYC)的稳定性协调控制策略。为修正车辆行驶过程中的前轮转角输入,设计了基于微分平坦与RBF神经网络的AFS控制器,从而提高车辆的转向能力。针对AFS控制器在极限工况下易失效的缺陷,引入基于线性二次型调节器(LQR)的直接横摆力矩控制算法,并依照轴荷比分配四轮力矩。最后,依据机械弹性电动轮的质心侧偏角-质心侧偏角速度相平面图划分稳定域,实现AFS与DYC的协调控制。通过Matlab/Simulink和Carsim进行联合仿真,结果表明:所提出的AFS控制算法在高速高附着工况下有良好的稳定控制性能,但在高速、低附着极限工况下控制效果受到影响。而AFS/DYC协调控制策略效果较好,跟踪精度优于单一控制器,质心侧偏角和横摆角速度的最大跟踪误差仅为3.03°和1.82(°)/s,可保证汽车在极限工况下转向时的横摆稳定性。  相似文献   

14.
选取具有独特性能和优势的电动车作为研究对象,采用轮毂电机加上液压系统进行动力输出,设计稳定性控制器对车辆的横摆稳定性进行控制。通过分层结构的控制器对横摆力矩进行控制,利用电液协调系统调节,增强其横摆稳定性。经研究,设计的基于滑模控制横摆稳定控制器以及电液协调系统对车辆横向稳定性有很大提升。从仿真结果来看,对于质心侧偏角和横摆角速度控制效果很好,车辆抗失稳能力有很大提升,证明了电液协调系统和滑模控制的可靠性。通过NI硬件在环系统对所设计控制器进行验证,证明了其有效性和实时性。  相似文献   

15.
针对某型纯电动汽车进行轮毂电机参数匹配设计,建立整车参数化模型;以横摆角速度和质心侧偏角偏差作为控制目标,基于滑模控制理论及罚函数法,提出整车横摆稳定性控制和轮毂电机转矩分配控制策略;选取双移线和鱼钩试验2种典型工况,与无控制和模糊PID控制策略进行对比分析,对控制策略进行仿真验证。结果表明:采用积分滑模控制策略后,双移线试验工况下,车辆横摆角速度最大值为0.17 rad/s,质心侧偏角最大值为-0.038 rad;鱼钩试验工况下,车辆横摆角速度最大值为0.23 rad/s,质心侧偏角最大值为0.049 rad,均小于未加控制时车辆的状态参数,所提出的整车横摆稳定性控制策略能够有效对车辆进行横摆稳定性控制,降低车辆失稳机率。  相似文献   

16.
以对开路面下四轮毂电机电动汽车制动能量回收控制策略为研究对象,以提高对开路面下的制动能量回收效率和制动能量回收时的制动稳定性为目标,考虑制动强度对制动能量回收效率的影响及对开路面对制动稳定性的影响,提出了当两前轮轮毂电机制动力大于制动需求时,仅由两前轮轮毂电机提供制动力,反之,由4个轮毂电机共同提供制动力,对开路面下制动时,依据两侧路面附着系数分配左、右轮制动力的控制策略;基于Matlab/Simulink搭建了制动能量回收控制模型,基于FTP-75工况及对开路面工况,分别对制动能量回收有效性及制动稳定性进行验证,仿真结果表明:一次FTP-75工况下,采用所提的控制策略能够回收0.132kW·h的能量,相对于2个轮毂电机、4个轮毂电机按固定比例提供制动力的控制策略分别提高23.3%、7.3%;在对开路面制动时能够缩小两侧车轮地面制动力的差值,减小车辆横摆力矩,有效提高汽车制动稳定性。  相似文献   

17.
针对某些紧急工况下单一转向或单一制动控制不能有效避撞或避撞时操纵稳定性较差的问题,提出一种新的基于功能分配与多目标模糊决策的转向与制动协同避撞控制策略。根据自车道上自车与前车运动关系及自车与相邻车道前车运动关系,分别建立转向与制动安全距离模型和控制器。功能分配控制器运用多目标模糊决策来确定转向与制动控制器的功能分配系数,从而实现功能分配控制。应用Car Sim与Simulink进行联合仿真,结果表明:协同控制策略能够有效避撞,而且有良好的操纵稳定性。  相似文献   

18.
针对传统基于单一控制方法的车辆路径跟踪控制算法无法准确跟踪路径的缺点,以智能车作为研究对象,提出基于预瞄控制和模糊滑模控制的车辆横向控制算法。基于智能车在横向控制中的运动特性,建立横向和横摆两个自由度的车辆模型。针对传统基于反馈控制的方法实时性差的缺点,通过建立预瞄模型来获取预瞄偏差,保证车辆在行驶中提前预估前方道路环境信息,提高实时性。基于滑模和模糊控制,设计了智能车辆路径跟踪横向控制器。采用由集成偏差组成的滑模切换函数及其微分作为控制器的输入,把对误差的控制转化为对滑模函数的控制,保证了车辆转向时的稳定性。Matlab/Simulink的仿真结果表明:智能车辆路径跟踪横向控制器能够在曲率急剧变化的路段实现路径准确跟踪,满足车辆实际行驶要求。  相似文献   

19.
针对分布式驱动电动汽车控制系统发生不确定的执行器故障情况,提出一种基于自适应Backstepping的容错控制方法。对电动汽车控制系统建立驱动电机故障模型,描述可能发生的执行器故障情况;采用自适应控制和Backstepping控制设计相结合的策略,针对各故障情况分别设计一种容错控制器;将各控制器进行融合得到一个复合控制器,提高了车辆的安全性和可靠性。基于Matlab进行了仿真验证:给出的容错控制方法能够保证车辆闭环系统稳定和渐近跟踪给定的输出指令,提高了车辆的操纵稳定性和执行器故障容错性能。  相似文献   

20.
针对四轮驱动电动客车电子差速控制问题,考虑车辆转向过程中垂直载荷转移以及转向过程的横向稳定性,提出了以车轮滑转率为控制目标的电子差速控制策略,通过对4个驱动电机进行转矩调节以达到控制目标。在Carsim/Simulink联合仿真平台下进行离线仿真,经验证该策略可以根据不同转向工况对各个驱动电机转矩实时分配,将仿真结果与无电子差速策略的车辆仿真结果进行对比,相同转向工况下采用电子差速策略的车辆比无电子差速策略的车辆具有更好的差速效果和横向稳定性。在基于dSPACE/Infineon-TriCore搭建的硬件在环实验平台上进行半实物仿真,验证该电子差速控制策略的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号