首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers model averaging as a way to construct optimal instruments for the two‐stage least squares (2SLS), limited information maximum likelihood (LIML), and Fuller estimators in the presence of many instruments. We propose averaging across least squares predictions of the endogenous variables obtained from many different choices of instruments and then use the average predicted value of the endogenous variables in the estimation stage. The weights for averaging are chosen to minimize the asymptotic mean squared error of the model averaging version of the 2SLS, LIML, or Fuller estimator. This can be done by solving a standard quadratic programming problem.  相似文献   

2.
This paper analyzes the conditions under which consistent estimation can be achieved in instrumental variables (IV) regression when the available instruments are weak and the number of instruments, Kn, goes to infinity with the sample size. We show that consistent estimation depends importantly on the strength of the instruments as measured by rn, the rate of growth of the so‐called concentration parameter, and also on Kn. In particular, when Kn→∞, the concentration parameter can grow, even if each individual instrument is only weakly correlated with the endogenous explanatory variables, and consistency of certain estimators can be established under weaker conditions than have previously been assumed in the literature. Hence, the use of many weak instruments may actually improve the performance of certain point estimators. More specifically, we find that the limited information maximum likelihood (LIML) estimator and the bias‐corrected two‐stage least squares (B2SLS) estimator are consistent when , while the two‐stage least squares (2SLS) estimator is consistent only if Kn/rn→0 as n→∞. These consistency results suggest that LIML and B2SLS are more robust to instrument weakness than 2SLS.  相似文献   

3.
This paper applies some general concepts in decision theory to a simple instrumental variables model. There are two endogenous variables linked by a single structural equation; k of the exogenous variables are excluded from this structural equation and provide the instrumental variables (IV). The reduced‐form distribution of the endogenous variables conditional on the exogenous variables corresponds to independent draws from a bivariate normal distribution with linear regression functions and a known covariance matrix. A canonical form of the model has parameter vector (ρ, φ, ω), where φis the parameter of interest and is normalized to be a point on the unit circle. The reduced‐form coefficients on the instrumental variables are split into a scalar parameter ρand a parameter vector ω, which is normalized to be a point on the (k−1)‐dimensional unit sphere; ρmeasures the strength of the association between the endogenous variables and the instrumental variables, and ωis a measure of direction. A prior distribution is introduced for the IV model. The parameters φ, ρ, and ωare treated as independent random variables. The distribution for φis uniform on the unit circle; the distribution for ωis uniform on the unit sphere with dimension k‐1. These choices arise from the solution of a minimax problem. The prior for ρis left general. It turns out that given any positive value for ρ, the Bayes estimator of φdoes not depend on ρ; it equals the maximum‐likelihood estimator. This Bayes estimator has constant risk; because it minimizes average risk with respect to a proper prior, it is minimax. The same general concepts are applied to obtain confidence intervals. The prior distribution is used in two ways. The first way is to integrate out the nuisance parameter ωin the IV model. This gives an integrated likelihood function with two scalar parameters, φand ρ. Inverting a likelihood ratio test, based on the integrated likelihood function, provides a confidence interval for φ. This lacks finite sample optimality, but invariance arguments show that the risk function depends only on ρand not on φor ω. The second approach to confidence sets aims for finite sample optimality by setting up a loss function that trades off coverage against the length of the interval. The automatic uniform priors are used for φand ω, but a prior is also needed for the scalar ρ, and no guidance is offered on this choice. The Bayes rule is a highest posterior density set. Invariance arguments show that the risk function depends only on ρand not on φor ω. The optimality result combines average risk and maximum risk. The confidence set minimizes the average—with respect to the prior distribution for ρ—of the maximum risk, where the maximization is with respect to φand ω.  相似文献   

4.
We develop results for the use of Lasso and post‐Lasso methods to form first‐stage predictions and estimate optimal instruments in linear instrumental variables (IV) models with many instruments, p. Our results apply even when p is much larger than the sample size, n. We show that the IV estimator based on using Lasso or post‐Lasso in the first stage is root‐n consistent and asymptotically normal when the first stage is approximately sparse, that is, when the conditional expectation of the endogenous variables given the instruments can be well‐approximated by a relatively small set of variables whose identities may be unknown. We also show that the estimator is semiparametrically efficient when the structural error is homoscedastic. Notably, our results allow for imperfect model selection, and do not rely upon the unrealistic “beta‐min” conditions that are widely used to establish validity of inference following model selection (see also Belloni, Chernozhukov, and Hansen (2011b)). In simulation experiments, the Lasso‐based IV estimator with a data‐driven penalty performs well compared to recently advocated many‐instrument robust procedures. In an empirical example dealing with the effect of judicial eminent domain decisions on economic outcomes, the Lasso‐based IV estimator outperforms an intuitive benchmark. Optimal instruments are conditional expectations. In developing the IV results, we establish a series of new results for Lasso and post‐Lasso estimators of nonparametric conditional expectation functions which are of independent theoretical and practical interest. We construct a modification of Lasso designed to deal with non‐Gaussian, heteroscedastic disturbances that uses a data‐weighted 1‐penalty function. By innovatively using moderate deviation theory for self‐normalized sums, we provide convergence rates for the resulting Lasso and post‐Lasso estimators that are as sharp as the corresponding rates in the homoscedastic Gaussian case under the condition that logp = o(n1/3). We also provide a data‐driven method for choosing the penalty level that must be specified in obtaining Lasso and post‐Lasso estimates and establish its asymptotic validity under non‐Gaussian, heteroscedastic disturbances.  相似文献   

5.
Properties of instrumental variable estimators are sensitive to the choice of valid instruments, even in large cross‐section applications. In this paper we address this problem by deriving simple mean‐square error criteria that can be minimized to choose the instrument set. We develop these criteria for two‐stage least squares (2SLS), limited information maximum likelihood (LIML), and a bias adjusted version of 2SLS (B2SLS). We give a theoretical derivation of the mean‐square error and show optimality. In Monte Carlo experiments we find that the instrument choice generally yields an improvement in performance. Also, in the Angrist and Krueger (1991) returns to education application, when the instrument set is chosen in the way we consider, it turns out that both 2SLS and LIML give similar (large) returns to education.  相似文献   

6.
Instrumental variables are widely used in applied econometrics to achieve identification and carry out estimation and inference in models that contain endogenous explanatory variables. In most applications, the function of interest (e.g., an Engel curve or demand function) is assumed to be known up to finitely many parameters (e.g., a linear model), and instrumental variables are used to identify and estimate these parameters. However, linear and other finite‐dimensional parametric models make strong assumptions about the population being modeled that are rarely if ever justified by economic theory or other a priori reasoning and can lead to seriously erroneous conclusions if they are incorrect. This paper explores what can be learned when the function of interest is identified through an instrumental variable but is not assumed to be known up to finitely many parameters. The paper explains the differences between parametric and nonparametric estimators that are important for applied research, describes an easily implemented nonparametric instrumental variables estimator, and presents empirical examples in which nonparametric methods lead to substantive conclusions that are quite different from those obtained using standard, parametric estimators.  相似文献   

7.
We develop a new specification test for IV estimators adopting a particular second order approximation of Bekker. The new specification test compares the difference of the forward (conventional) 2SLS estimator of the coefficient of the right‐hand side endogenous variable with the reverse 2SLS estimator of the same unknown parameter when the normalization is changed. Under the null hypothesis that conventional first order asymptotics provide a reliable guide to inference, the two estimates should be very similar. Our test sees whether the resulting difference in the two estimates satisfies the results of second order asymptotic theory. Essentially the same idea is applied to develop another new specification test using second‐order unbiased estimators of the type first proposed by Nagar. If the forward and reverse Nagar‐type estimators are not significantly different we recommend estimation by LIML, which we demonstrate is the optimal linear combination of the Nagar‐type estimators (to second order). We also demonstrate the high degree of similarity for k‐class estimators between the approach of Bekker and the Edgeworth expansion approach of Rothenberg. An empirical example and Monte Carlo evidence demonstrate the operation of the new specification test.  相似文献   

8.
We introduce the class of conditional linear combination tests, which reject null hypotheses concerning model parameters when a data‐dependent convex combination of two identification‐robust statistics is large. These tests control size under weak identification and have a number of optimality properties in a conditional problem. We show that the conditional likelihood ratio test of Moreira, 2003 is a conditional linear combination test in models with one endogenous regressor, and that the class of conditional linear combination tests is equivalent to a class of quasi‐conditional likelihood ratio tests. We suggest using minimax regret conditional linear combination tests and propose a computationally tractable class of tests that plug in an estimator for a nuisance parameter. These plug‐in tests perform well in simulation and have optimal power in many strongly identified models, thus allowing powerful identification‐robust inference in a wide range of linear and nonlinear models without sacrificing efficiency if identification is strong.  相似文献   

9.
This paper provides a first order asymptotic theory for generalized method of moments (GMM) estimators when the number of moment conditions is allowed to increase with the sample size and the moment conditions may be weak. Examples in which these asymptotics are relevant include instrumental variable (IV) estimation with many (possibly weak or uninformed) instruments and some panel data models that cover moderate time spans and have correspondingly large numbers of instruments. Under certain regularity conditions, the GMM estimators are shown to converge in probability but not necessarily to the true parameter, and conditions for consistent GMM estimation are given. A general framework for the GMM limit distribution theory is developed based on epiconvergence methods. Some illustrations are provided, including consistent GMM estimation of a panel model with time varying individual effects, consistent limited information maximum likelihood estimation as a continuously updated GMM estimator, and consistent IV structural estimation using large numbers of weak or irrelevant instruments. Some simulations are reported.  相似文献   

10.
Using many moment conditions can improve efficiency but makes the usual generalized method of moments (GMM) inferences inaccurate. Two‐step GMM is biased. Generalized empirical likelihood (GEL) has smaller bias, but the usual standard errors are too small in instrumental variable settings. In this paper we give a new variance estimator for GEL that addresses this problem. It is consistent under the usual asymptotics and, under many weak moment asymptotics, is larger than usual and is consistent. We also show that the Kleibergen (2005) Lagrange multiplier and conditional likelihood ratio statistics are valid under many weak moments. In addition, we introduce a jackknife GMM estimator, but find that GEL is asymptotically more efficient under many weak moments. In Monte Carlo examples we find that t‐statistics based on the new variance estimator have nearly correct size in a wide range of cases.  相似文献   

11.
In this paper we study identification and estimation of a correlated random coefficients (CRC) panel data model. The outcome of interest varies linearly with a vector of endogenous regressors. The coefficients on these regressors are heterogenous across units and may covary with them. We consider the average partial effect (APE) of a small change in the regressor vector on the outcome (cf. Chamberlain (1984), Wooldridge (2005a)). Chamberlain (1992) calculated the semiparametric efficiency bound for the APE in our model and proposed a √N‐consistent estimator. Nonsingularity of the APE's information bound, and hence the appropriateness of Chamberlain's (1992) estimator, requires (i) the time dimension of the panel (T) to strictly exceed the number of random coefficients (p) and (ii) strong conditions on the time series properties of the regressor vector. We demonstrate irregular identification of the APE when T = p and for more persistent regressor processes. Our approach exploits the different identifying content of the subpopulations of stayers—or units whose regressor values change little across periods—and movers—or units whose regressor values change substantially across periods. We propose a feasible estimator based on our identification result and characterize its large sample properties. While irregularity precludes our estimator from attaining parametric rates of convergence, its limiting distribution is normal and inference is straightforward to conduct. Standard software may be used to compute point estimates and standard errors. We use our methods to estimate the average elasticity of calorie consumption with respect to total outlay for a sample of poor Nicaraguan households.  相似文献   

12.
In this paper we derive the asymptotic properties of within groups (WG), GMM, and LIML estimators for an autoregressive model with random effects when both T and N tend to infinity. GMM and LIML are consistent and asymptotically equivalent to the WG estimator. When T/N→ 0 the fixed T results for GMM and LIML remain valid, but WG, although consistent, has an asymptotic bias in its asymptotic distribution. When T/N tends to a positive constant, the WG, GMM, and LIML estimators exhibit negative asymptotic biases of order 1/T, 1/N, and 1/(2NT), respectively. In addition, the crude GMM estimator that neglects the autocorrelation in first differenced errors is inconsistent as T/Nc>0, despite being consistent for fixed T. Finally, we discuss the properties of a random effects pseudo MLE with unrestricted initial conditions when both T and N tend to infinity.  相似文献   

13.
We consider tests of a simple null hypothesis on a subset of the coefficients of the exogenous and endogenous regressors in a single‐equation linear instrumental variables regression model with potentially weak identification. Existing methods of subset inference (i) rely on the assumption that the parameters not under test are strongly identified, or (ii) are based on projection‐type arguments. We show that, under homoskedasticity, the subset Anderson and Rubin (1949) test that replaces unknown parameters by limited information maximum likelihood estimates has correct asymptotic size without imposing additional identification assumptions, but that the corresponding subset Lagrange multiplier test is size distorted asymptotically.  相似文献   

14.
We study the asymptotic distribution of three‐step estimators of a finite‐dimensional parameter vector where the second step consists of one or more nonparametric regressions on a regressor that is estimated in the first step. The first‐step estimator is either parametric or nonparametric. Using Newey's (1994) path‐derivative method, we derive the contribution of the first‐step estimator to the influence function. In this derivation, it is important to account for the dual role that the first‐step estimator plays in the second‐step nonparametric regression, that is, that of conditioning variable and that of argument.  相似文献   

15.
This paper investigates asymptotic properties of the maximum likelihood estimator and the quasi‐maximum likelihood estimator for the spatial autoregressive model. The rates of convergence of those estimators may depend on some general features of the spatial weights matrix of the model. It is important to make the distinction with different spatial scenarios. Under the scenario that each unit will be influenced by only a few neighboring units, the estimators may have ‐rate of convergence and be asymptotically normal. When each unit can be influenced by many neighbors, irregularity of the information matrix may occur and various components of the estimators may have different rates of convergence.  相似文献   

16.
This paper presents a solution to an important econometric problem, namely the root n consistent estimation of nonlinear models with measurement errors in the explanatory variables, when one repeated observation of each mismeasured regressor is available. While a root n consistent estimator has been derived for polynomial specifications (see Hausman, Ichimura, Newey, and Powell (1991)), such an estimator for general nonlinear specifications has so far not been available. Using the additional information provided by the repeated observation, the suggested estimator separates the measurement error from the “true” value of the regressors thanks to a useful property of the Fourier transform: The Fourier transform converts the integral equations that relate the distribution of the unobserved “true” variables to the observed variables measured with error into algebraic equations. The solution to these equations yields enough information to identify arbitrary moments of the “true,” unobserved variables. The value of these moments can then be used to construct any estimator that can be written in terms of moments, including traditional linear and nonlinear least squares estimators, or general extremum estimators. The proposed estimator is shown to admit a representation in terms of an influence function, thus establishing its root n consistency and asymptotic normality. Monte Carlo evidence and an application to Engel curve estimation illustrate the usefulness of this new approach.  相似文献   

17.
We introduce methods for estimating nonparametric, nonadditive models with simultaneity. The methods are developed by directly connecting the elements of the structural system to be estimated with features of the density of the observable variables, such as ratios of derivatives or averages of products of derivatives of this density. The estimators are therefore easily computed functionals of a nonparametric estimator of the density of the observable variables. We consider in detail a model where to each structural equation there corresponds an exclusive regressor and a model with one equation of interest and one instrument that is included in a second equation. For both models, we provide new characterizations of observational equivalence on a set, in terms of the density of the observable variables and derivatives of the structural functions. Based on those characterizations, we develop two estimation methods. In the first method, the estimators of the structural derivatives are calculated by a simple matrix inversion and matrix multiplication, analogous to a standard least squares estimator, but with the elements of the matrices being averages of products of derivatives of nonparametric density estimators. In the second method, the estimators of the structural derivatives are calculated in two steps. In a first step, values of the instrument are found at which the density of the observable variables satisfies some properties. In the second step, the estimators are calculated directly from the values of derivatives of the density of the observable variables evaluated at the found values of the instrument. We show that both pointwise estimators are consistent and asymptotically normal.  相似文献   

18.
This paper considers tests of the parameter on an endogenous variable in an instrumental variables regression model. The focus is on determining tests that have some optimal power properties. We start by considering a model with normally distributed errors and known error covariance matrix. We consider tests that are similar and satisfy a natural rotational invariance condition. We determine a two‐sided power envelope for invariant similar tests. This allows us to assess and compare the power properties of tests such as the conditional likelihood ratio (CLR), the Lagrange multiplier, and the Anderson–Rubin tests. We find that the CLR test is quite close to being uniformly most powerful invariant among a class of two‐sided tests. The finite‐sample results of the paper are extended to the case of unknown error covariance matrix and possibly nonnormal errors via weak instrument asymptotics. Strong instrument asymptotic results also are provided because we seek tests that perform well under both weak and strong instruments.  相似文献   

19.
We present a methodology for estimating the distributional effects of an endogenous treatment that varies at the group level when there are group‐level unobservables, a quantile extension of Hausman and Taylor, 1981. Because of the presence of group‐level unobservables, standard quantile regression techniques are inconsistent in our setting even if the treatment is independent of unobservables. In contrast, our estimation technique is consistent as well as computationally simple, consisting of group‐by‐group quantile regression followed by two‐stage least squares. Using the Bahadur representation of quantile estimators, we derive weak conditions on the growth of the number of observations per group that are sufficient for consistency and asymptotic zero‐mean normality of our estimator. As in Hausman and Taylor, 1981, micro‐level covariates can be used as internal instruments for the endogenous group‐level treatment if they satisfy relevance and exogeneity conditions. Our approach applies to a broad range of settings including labor, public finance, industrial organization, urban economics, and development; we illustrate its usefulness with several such examples. Finally, an empirical application of our estimator finds that low‐wage earners in the United States from 1990 to 2007 were significantly more affected by increased Chinese import competition than high‐wage earners.  相似文献   

20.
An autoregressive model with Markov regime‐switching is analyzed that reflects on the properties of the quasi‐likelihood ratio test developed by Cho and White (2007). For such a model, we show that consistency of the quasi‐maximum likelihood estimator for the population parameter values, on which consistency of the test is based, does not hold. We describe a condition that ensures consistency of the estimator and discuss the consistency of the test in the absence of consistency of the estimator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号