首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a simple two-step nonparametric estimator for a triangular simultaneous equation model. Our approach employs series approximations that exploit the additive structure of the model. The first step comprises the nonparametric estimation of the reduced form and the corresponding residuals. The second step is the estimation of the primary equation via nonparametric regression with the reduced form residuals included as a regressor. We derive consistency and asymptotic normality results for our estimator, including optimal convergence rates. Finally we present an empirical example, based on the relationship between the hourly wage rate and annual hours worked, which illustrates the utility of our approach.  相似文献   

2.
The purpose of this note is to show how semiparametric estimators with a small bias property can be constructed. The small bias property (SBP) of a semiparametric estimator is that its bias converges to zero faster than the pointwise and integrated bias of the nonparametric estimator on which it is based. We show that semiparametric estimators based on twicing kernels have the SBP. We also show that semiparametric estimators where nonparametric kernel estimation does not affect the asymptotic variance have the SBP. In addition we discuss an interpretation of series and sieve estimators as idempotent transformations of the empirical distribution that helps explain the known result that they lead to the SBP. In Monte Carlo experiments we find that estimators with the SBP have mean‐square error that is smaller and less sensitive to bandwidth than those that do not have the SBP.  相似文献   

3.
We consider semiparametric estimation of the memory parameter in a model that includes as special cases both long‐memory stochastic volatility and fractionally integrated exponential GARCH (FIEGARCH) models. Under our general model the logarithms of the squared returns can be decomposed into the sum of a long‐memory signal and a white noise. We consider periodogram‐based estimators using a local Whittle criterion function. We allow the optional inclusion of an additional term to account for possible correlation between the signal and noise processes, as would occur in the FIEGARCH model. We also allow for potential nonstationarity in volatility by allowing the signal process to have a memory parameter d*1/2. We show that the local Whittle estimator is consistent for d*∈(0,1). We also show that the local Whittle estimator is asymptotically normal for d*∈(0,3/4) and essentially recovers the optimal semiparametric rate of convergence for this problem. In particular, if the spectral density of the short‐memory component of the signal is sufficiently smooth, a convergence rate of n2/5−δ for d*∈(0,3/4) can be attained, where n is the sample size and δ>0 is arbitrarily small. This represents a strong improvement over the performance of existing semiparametric estimators of persistence in volatility. We also prove that the standard Gaussian semiparametric estimator is asymptotically normal if d*=0. This yields a test for long memory in volatility.  相似文献   

4.
This paper establishes that instruments enable the identification of nonparametric regression models in the presence of measurement error by providing a closed form solution for the regression function in terms of Fourier transforms of conditional expectations of observable variables. For parametrically specified regression functions, we propose a root n consistent and asymptotically normal estimator that takes the familiar form of a generalized method of moments estimator with a plugged‐in nonparametric kernel density estimate. Both the identification and the estimation methodologies rely on Fourier analysis and on the theory of generalized functions. The finite‐sample properties of the estimator are investigated through Monte Carlo simulations.  相似文献   

5.
We study the asymptotic distribution of three‐step estimators of a finite‐dimensional parameter vector where the second step consists of one or more nonparametric regressions on a regressor that is estimated in the first step. The first‐step estimator is either parametric or nonparametric. Using Newey's (1994) path‐derivative method, we derive the contribution of the first‐step estimator to the influence function. In this derivation, it is important to account for the dual role that the first‐step estimator plays in the second‐step nonparametric regression, that is, that of conditioning variable and that of argument.  相似文献   

6.
We provide easy to verify sufficient conditions for the consistency and asymptotic normality of a class of semiparametric optimization estimators where the criterion function does not obey standard smoothness conditions and simultaneously depends on some nonparametric estimators that can themselves depend on the parameters to be estimated. Our results extend existing theories such as those of Pakes and Pollard (1989), Andrews (1994a), and Newey (1994). We also show that bootstrap provides asymptotically correct confidence regions for the finite dimensional parameters. We apply our results to two examples: a ‘hit rate’ and a partially linear median regression with some endogenous regressors.  相似文献   

7.
This paper considers inference on functionals of semi/nonparametric conditional moment restrictions with possibly nonsmooth generalized residuals, which include all of the (nonlinear) nonparametric instrumental variables (IV) as special cases. These models are often ill‐posed and hence it is difficult to verify whether a (possibly nonlinear) functional is root‐n estimable or not. We provide computationally simple, unified inference procedures that are asymptotically valid regardless of whether a functional is root‐n estimable or not. We establish the following new useful results: (1) the asymptotic normality of a plug‐in penalized sieve minimum distance (PSMD) estimator of a (possibly nonlinear) functional; (2) the consistency of simple sieve variance estimators for the plug‐in PSMD estimator, and hence the asymptotic chi‐square distribution of the sieve Wald statistic; (3) the asymptotic chi‐square distribution of an optimally weighted sieve quasi likelihood ratio (QLR) test under the null hypothesis; (4) the asymptotic tight distribution of a non‐optimally weighted sieve QLR statistic under the null; (5) the consistency of generalized residual bootstrap sieve Wald and QLR tests; (6) local power properties of sieve Wald and QLR tests and of their bootstrap versions; (7) asymptotic properties of sieve Wald and SQLR for functionals of increasing dimension. Simulation studies and an empirical illustration of a nonparametric quantile IV regression are presented.  相似文献   

8.
We propose a semiparametric two‐step inference procedure for a finite‐dimensional parameter based on moment conditions constructed from high‐frequency data. The population moment conditions take the form of temporally integrated functionals of state‐variable processes that include the latent stochastic volatility process of an asset. In the first step, we nonparametrically recover the volatility path from high‐frequency asset returns. The nonparametric volatility estimator is then used to form sample moment functions in the second‐step GMM estimation, which requires the correction of a high‐order nonlinearity bias from the first step. We show that the proposed estimator is consistent and asymptotically mixed Gaussian and propose a consistent estimator for the conditional asymptotic variance. We also construct a Bierens‐type consistent specification test. These infill asymptotic results are based on a novel empirical‐process‐type theory for general integrated functionals of noisy semimartingale processes.  相似文献   

9.
We develop a √n‐consistent and asymptotically normal estimator of the parameters (regression coefficients and threshold points) of a semiparametric ordered response model under the assumption of independence of errors and regressors. The independence assumption implies shift restrictions allowing identification of threshold points up to location and scale. The estimator is useful in various applications, particularly in new product demand forecasting from survey data subject to systematic misreporting. We apply the estimator to assess exaggeration bias in survey data on demand for a new telecommunications service.  相似文献   

10.
We investigate a class of semiparametric ARCH(∞) models that includes as a special case the partially nonparametric (PNP) model introduced by Engle and Ng (1993) and which allows for both flexible dynamics and flexible function form with regard to the “news impact” function. We show that the functional part of the model satisfies a type II linear integral equation and give simple conditions under which there is a unique solution. We propose an estimation method that is based on kernel smoothing and profiled likelihood. We establish the distribution theory of the parametric components and the pointwise distribution of the nonparametric component of the model. We also discuss efficiency of both the parametric part and the nonparametric part. We investigate the performance of our procedures on simulated data and on a sample of S&P500 index returns. We find evidence of asymmetric news impact functions, consistent with the parametric analysis.  相似文献   

11.
This paper develops a new estimation procedure for characteristic‐based factor models of stock returns. We treat the factor model as a weighted additive nonparametric regression model, with the factor returns serving as time‐varying weights and a set of univariate nonparametric functions relating security characteristic to the associated factor betas. We use a time‐series and cross‐sectional pooled weighted additive nonparametric regression methodology to simultaneously estimate the factor returns and characteristic‐beta functions. By avoiding the curse of dimensionality, our methodology allows for a larger number of factors than existing semiparametric methods. We apply the technique to the three‐factor Fama–French model, Carhart's four‐factor extension of it that adds a momentum factor, and a five‐factor extension that adds an own‐volatility factor. We find that momentum and own‐volatility factors are at least as important, if not more important, than size and value in explaining equity return comovements. We test the multifactor beta pricing theory against a general alternative using a new nonparametric test.  相似文献   

12.
This paper proposes an asymptotically efficient method for estimating models with conditional moment restrictions. Our estimator generalizes the maximum empirical likelihood estimator (MELE) of Qin and Lawless (1994). Using a kernel smoothing method, we efficiently incorporate the information implied by the conditional moment restrictions into our empirical likelihood‐based procedure. This yields a one‐step estimator which avoids estimating optimal instruments. Our likelihood ratio‐type statistic for parametric restrictions does not require the estimation of variance, and achieves asymptotic pivotalness implicitly. The estimation and testing procedures we propose are normalization invariant. Simulation results suggest that our new estimator works remarkably well in finite samples.  相似文献   

13.
This paper studies the asymptotic properties of the quasi‐maximum likelihood estimator of (generalized autoregressive conditional heteroscedasticity) GARCH(1, 1) models without strict stationarity constraints and considers applications to testing problems. The estimator is unrestricted in the sense that the value of the intercept, which cannot be consistently estimated in the explosive case, is not fixed. A specific behavior of the estimator of the GARCH coefficients is obtained at the boundary of the stationarity region, but, except for the intercept, this estimator remains consistent and asymptotically normal in every situation. The asymptotic variance is different in the stationary and nonstationary situations, but is consistently estimated with the same estimator in both cases. Tests of strict stationarity and nonstationarity are proposed. The tests developed for the classical GARCH(1, 1) model are able to detect nonstationarity in more general GARCH models. A numerical illustration based on stock indices and individual stock returns is proposed.  相似文献   

14.
We show that it is possible to adapt to nonparametric disturbance autocorrelation in time series regression in the presence of long memory in both regressors and disturbances by using a smoothed nonparametric spectrum estimate in frequency–domain generalized least squares. When the collective memory in regressors and disturbances is sufficiently strong, ordinary least squares is not only asymptotically inefficient but asymptotically non–normal and has a slow rate of convergence, whereas generalized least squares is asymptotically normal and Gauss–Markov efficient with standard convergence rate. Despite the anomalous behavior of nonparametric spectrum estimates near a spectral pole, we are able to justify a standard construction of frequency–domain generalized least squares, earlier considered in case of short memory disturbances. A small Monte Carlo study of finite sample performance is included.  相似文献   

15.
We consider nonparametric estimation of a regression function that is identified by requiring a specified quantile of the regression “error” conditional on an instrumental variable to be zero. The resulting estimating equation is a nonlinear integral equation of the first kind, which generates an ill‐posed inverse problem. The integral operator and distribution of the instrumental variable are unknown and must be estimated nonparametrically. We show that the estimator is mean‐square consistent, derive its rate of convergence in probability, and give conditions under which this rate is optimal in a minimax sense. The results of Monte Carlo experiments show that the estimator behaves well in finite samples.  相似文献   

16.
It is well known that, in misspecified parametric models, the maximum likelihood estimator (MLE) is consistent for the pseudo‐true value and has an asymptotically normal sampling distribution with “sandwich” covariance matrix. Also, posteriors are asymptotically centered at the MLE, normal, and of asymptotic variance that is, in general, different than the sandwich matrix. It is shown that due to this discrepancy, Bayesian inference about the pseudo‐true parameter value is, in general, of lower asymptotic frequentist risk when the original posterior is substituted by an artificial normal posterior centered at the MLE with sandwich covariance matrix. An algorithm is suggested that allows the implementation of this artificial posterior also in models with high dimensional nuisance parameters which cannot reasonably be estimated by maximizing the likelihood.  相似文献   

17.
We propose an estimation method for models of conditional moment restrictions, which contain finite dimensional unknown parameters (θ) and infinite dimensional unknown functions (h). Our proposal is to approximate h with a sieve and to estimate θ and the sieve parameters jointly by applying the method of minimum distance. We show that: (i) the sieve estimator of h is consistent with a rate faster than n‐1/4 under certain metric; (ii) the estimator of θ is √n consistent and asymptotically normally distributed; (iii) the estimator for the asymptotic covariance of the θ estimator is consistent and easy to compute; and (iv) the optimally weighted minimum distance estimator of θ attains the semiparametric efficiency bound. We illustrate our results with two examples: a partially linear regression with an endogenous nonparametric part, and a partially additive IV regression with a link function.  相似文献   

18.
We establish consistency and asymptotic normality of the quasi‐maximum likelihood estimator in the linear ARCH model. Contrary to the existing literature, we allow the parameters to be in the region where no stationary version of the process exists. This implies that the estimator is always asymptotically normal.  相似文献   

19.
This paper considers the problem of choosing the number of bootstrap repetitions B for bootstrap standard errors, confidence intervals, confidence regions, hypothesis tests, p‐values, and bias correction. For each of these problems, the paper provides a three‐step method for choosing B to achieve a desired level of accuracy. Accuracy is measured by the percentage deviation of the bootstrap standard error estimate, confidence interval length, test's critical value, test's p‐value, or bias‐corrected estimate based on B bootstrap simulations from the corresponding ideal bootstrap quantities for which B=. The results apply quite generally to parametric, semiparametric, and nonparametric models with independent and dependent data. The results apply to the standard nonparametric iid bootstrap, moving block bootstraps for time series data, parametric and semiparametric bootstraps, and bootstraps for regression models based on bootstrapping residuals. Monte Carlo simulations show that the proposed methods work very well.  相似文献   

20.
Jump Regressions     
We develop econometric tools for studying jump dependence of two processes from high‐frequency observations on a fixed time interval. In this context, only segments of data around a few outlying observations are informative for the inference. We derive an asymptotically valid test for stability of a linear jump relation over regions of the jump size domain. The test has power against general forms of nonlinearity in the jump dependence as well as temporal instabilities. We further propose an efficient estimator for the linear jump regression model that is formed by optimally weighting the detected jumps with weights based on the diffusive volatility around the jump times. We derive the asymptotic limit of the estimator, a semiparametric lower efficiency bound for the linear jump regression, and show that our estimator attains the latter. The analysis covers both deterministic and random jump arrivals. In an empirical application, we use the developed inference techniques to test the temporal stability of market jump betas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号