首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
我们知道,在数学分析中对函数级数有如下的“逐项可微分”定理: 若函数级数sum from n=1 to ∞u_n(x)满足下列条件 (i)在区间[a、b]上收敛,并且和为s(x)。 (ii)每一项在区间[a,b]上有连续导数。 (iii)函数级数sum from n=1 to ∞u_  相似文献   

2.
设f_2(z)=z+sum from n=1 to ∞(b_nz~(2n+1))∈S~*,本文证明了||b_n|-|b_n-1||<20n~(-1/2)改进了V.I.Milin的一结果。  相似文献   

3.
一、f(x)在[a,b]上的三角展开式及其特例 我们知道,在[-π,π]上满足收敛定理条件(如Dini定理的“逐段光滑”)的函数 f(x),由系数a_n=1/π integral from n=-π to π f(x)siinxdx,(n=1,2,3,……) (1)b_n=1/π integral from n=-π to π f(x)siinxdx,(n=1,2,3,……) (2)确定的三角级数 a_0/2+sum from n=1 to∞(a_n cosnx+b_n sinnx) (3)  相似文献   

4.
设X是一实Banach空间,X’是一致凸共轭空间,K是X的非空有界闭凸集,设T:K→K是一强伪压缩映象,如果F_(1X)(T)≠Φ,则Mann迭代|X_a|: X_(n-1)=(1-α_(11))xn αnTx_n (n=0、1、2…) 其中α_n∈(0,1),sum from n=0 to ∞(α_n= ∞),α_(11)→0(n→ ∞)强收敛于T的唯一不动点。 本文结果推广了[3]、[4]的结论。  相似文献   

5.
常用于正项级数判敛的方法——比较判别法:设正项级数sum from n=1 to ∞(U_n),sum from n=1 to ∞(V_n),且U_n≤V_n 1.若sum from n=1 to ∞(V_n)收敛,则sum from n=1 to ∞(U_n)收敛 2.若sum from n=1 to ∞(U_n)发散,则sum from n=1 to ∞(V_n)发散 这个判敛法简单朴实,但也容易使人想到,收敛或发散的级数是否存在收敛或发散得最慢的呢?答案是否定的。 定义1 设正项级sum from n=1 to ∞(U_n),sum from n=1 to ∞(V_n)都收敛,若,则称sum from n=1 to ∞(U_n)收敛较sum from n=1 to ∞(V_n)慢。 下面所设的级数都是正项级数。 定理1 存在比任何收敛级数收敛更慢的收敛级数。  相似文献   

6.
本文研究了一类中立型偏微分方程(?)~2 /(?)t~2[u(x,t)+sum from i=1 to m(λ_i(t)u(x,t-τ_i)])+(?)/(?)t[u(x,t)+sum from i=1 to m(λ_i(t)u(x,t-τ_i)])+P(x,t)u(x,t)+sum from j=1 to m_1(P_j(x,t)u(x,t-δ_j))=△u(x,t)+sum from k=1 to m_2(a_k(t)△u(x,t-p_k)(1)解的振动性,其中(x,t)∈Ω×(0,+∞)≡G,Ω(?)R~n是有界域,(?)Ω逐片光滑,△u=sum from k=1 to n((?)~2/(?)x_k~2u(x,t)),我们获得了方程(1)在不同边界条件下的所有解振动的充分条件,并给出这些充分条件应用的实际例子.  相似文献   

7.
同一格林函数,往往可同时用函数形式和级数形式表示。本文从一个简单的微分方程出发,求出其格林函数的上述二种美示形式,并利用它们计算出无穷级数sum from n=1 to ∞(1/n~2)和sum from n=0 to ∞(1/(2n+1)~2)的值。  相似文献   

8.
§1 引言设P_n(x)是Legendre多项式P_n(1)=1,以P_n(x)的零点{x_k}_(k-1)~n为节点的拟Hermite—Fejér插值多项式是 H_n(f,x)=sum from k=0 to n 1 f(x_k)h_k(x),Vf∈C_([-1,1]). 这里 h_0(x)=(1 x/2)P_x~2(x),h_(n 1)(x)=(1-x/2)P-n~2(x), h_k(x)=((1-x~2)/(1-x_k~2))((P_n(x))/((x-x_k)P′_n(x_λ)))~2。关于H_n(f,x)对f的逼近度人们已作了不少工作。例如J. Prasad和A. K.  相似文献   

9.
本文主要刻画了由达标式f(ξ)=ξ(n)和异kpeuH的Langer条件当k≤m,sum from i=0 to n-1 (α_(ki)ξ_0~(i)=1mp,当k>m,sum from i=0 to n-1 (β_(Ri)ξ_1~(k)=1mp,所产生的微分算子的特征值的一个构造特征。  相似文献   

10.
众所周知,勒贝格有界收敛定理可以这样叙述:设(1)f_1(x),f_2(x),…,f_n(x),…是E上的一串可测函数,(2)它们一致有界,即有正的常数M,使|f_n(x)|≤M(n=1,2,3,…;x∈E),(3)f_n(x)(?)f(x),则lim(?)f_n(x)dx=(?)f(x)dx。这个定理除了必须满足上述的三个条件外,还是在假定mE<+∞的情况下提出的。即是说,勒贝格有界收敛定理对测度为无穷的集合是不成立的。今举一例说明之。例:设E=[0、+∞),  相似文献   

11.
给出了不等式 n/(sum from i=1 to n(1/a_i))≤(multiply from i=1 to n(a_i))~(1/n)≤(1/n)sum from i=1 to n(a_i)(n≥2,诸a_i>0)的三种证法,以例说明了它在求某些函数极值问题上的应用,并由它推出几个有用的不等式。  相似文献   

12.
设函数f(z)=z+a_2z~2+…在单位圆内解析单叶,记其族为S。对f(z)∈S,令φλ(z)=(f(z)/z)~λ=1+sum from 1 to ∞D_nZ~n。本文限制f(z)∈S(a)或Kc(a)(文中定义)条件下,获得β的上界,γ的下界,使t_n(λ)=||D_n(λ)|-|D_(n-1)(λ)||≤Aπ~(-β),sum fron 1 to ∞t(λ)<∞。  相似文献   

13.
本文研究了具有多个滞后量的一阶微分方程[x(t)-px(t-I)] qx(t) sum from I=1 to n(P_1)x(t-I_1)=0 (1)其中p、q、I、I_1(i=1,2,…,n)为正常数,得出了方程振动的几个充分性判据和一个比较定理。  相似文献   

14.
由文献[4]我们知道,当P(x)不同时,由齐次偏微分方程(α/αx×w(n,x,u)=n/p(x)×w(n,x,y)·(μ-x)及规范化条件integral from -∞=1 to ∞×w(n,x,u)du=1确定出的指数型算子integral from -∞=1 to ∞×w(n,x,u)f(u)·du亦不同。文[1]讨论了p(x)是至多二次的多项式时指数型算子的一致逼近问题,本文将就P(x)的更一般的情形给出一致逼近的正定理及饱和类。  相似文献   

15.
本文先给出一道分析命题,然后将它与微积分中值公式联系起来。 命题1 设函数f(x)在区间[0,1]上可导,而且f(0)=0,f(1)=1,则对任何sum from i=1 to n(α_i),0≤α_i≤1,存在[0,1]中n个不同数x_1,…,x_n,便得sum from i=1 to n(a_i/integral to 1(x_i)) =1 证n=1时,α_1=1,结论显然成立,下面不妨0<α_1<1,当n=2时,因为0<α_1<1,所以存在ξ_1∈(0,1)使得f(ξ)=α_1,由微分中值定理得:  相似文献   

16.
本文研究线性抛物型时滞微分方程组 φU_i/φt+sun from j=1 to m(P_(ij)(x,t)U_i(x,t-τ(t)))=a_i(t)△U_i+sun from j=1 to m_1(a_(ij)(t)△U_i(x,t-σ_j)),i=1,2…,m (1)解的振动性,其中(x,t)∈Ω×(0,∞),ΩR~n是具有逐片光滑的边界的有界区域,U_1=U_1(x,t),△U_1=sun from j=1 to n(φ~2Ui(x,t)/φx_j~2),获得了方程组(1)的所有解振动的充分条件,同时给出了应用这些充分条件的例子。  相似文献   

17.
为了提高正线性算子 Gauss-Weierstrass 算子的逼近阶,往往采用线性组合的方法.本文主要研究了一类 Gauss-Weierstrass 算子线性组合的同时逼近问题,在一致逼近的意义下,给出了逼近的正定理、逆定理及特征刻划.即我们得到了如下结果:设 f∈C_(-∞,+∞),f~(m)(x)存在,W_(n,r)(f;x)表示 Gauss-Weierstrass 算子的一种线性组合,则当 a<2r 时,有(i)‖W_(n,r)~(m)(f;x)-f~(m)‖≤M[ω_(2r)(fn~(-1/2))+n~(-r)];(ii) k_(2r)(f~(m);n~(-r))≤‖W_(k,r)~(m)(f;x)-f_(x)~(m)‖+M(k/n)~rk_(2r)(f~(m);k~(-r));(iii)‖W_(n,r)~(m)(f;x)-f~(m)‖=O(n~(-(a/2))ω_(2r)(f~(m);h)=O(h~a).  相似文献   

18.
我们用En表示n维欧几里得空间,且 integral from n=En(f(x)dx)=integral from n=En(f(x_1,x_2,…,x_n)dx_idx_2…dx_n 性质1 对于E_2中任何连续可微的函数u(x_1,x_2),其支集包含在某球:|x-x_0|相似文献   

19.
二项式级数在收敛区间端点的收敛性,是一个较困难的问题.该文主要根据不等式1/2·3/4…2n-1/2n≤1/(√3n 1)推广出两个初等不等式,然后借助这两个初等不等式,解决一些二项式级数和超越几何级数在收敛区间端点收敛性的证明.  相似文献   

20.
设M为n=2P维的紧致定向Riemann流形,本文将证明Gauss-Bonnet公式可表示成 x(M)=((-1)~p/2~pπ~p)∫_(mΩ_(1…n)) 其中,对任意偶数m≤n。 Ω_(i_1…i_m)=(sum from k)ε((1K2…K-1K+1…m)(1…m)Ω_(i_1i_k)∧Ω_(i_2…i_(k-1)i_(k+1)…i_m))  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号