首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. Pielaat 《Risk analysis》2011,31(9):1434-1450
A novel purpose of the use of mathematical models in quantitative microbial risk assessment (QMRA) is to identify the sources of microbial contamination in a food chain (i.e., biotracing). In this article we propose a framework for the construction of a biotracing model, eventually to be used in industrial food production chains where discrete numbers of products are processed that may be contaminated by a multitude of sources. The framework consists of steps in which a Monte Carlo model, simulating sequential events in the chain following a modular process risk modeling (MPRM) approach, is converted to a Bayesian belief network (BBN). The resulting model provides a probabilistic quantification of concentrations of a pathogen throughout a production chain. A BBN allows for updating the parameters of the model based on observational data, and global parameter sensitivity analysis is readily performed in a BBN. Moreover, a BBN enables “backward reasoning” when downstream data are available and is therefore a natural framework for answering biotracing questions. The proposed framework is illustrated with a biotracing model of Salmonella in the pork slaughter chain, based on a recently published Monte Carlo simulation model. This model, implemented as a BBN, describes the dynamics of Salmonella in a Dutch slaughterhouse and enables finding the source of contamination of specific carcasses at the end of the chain.  相似文献   

2.
According to Codex Alimentarius Commission recommendations, management options applied at the process production level should be based on good hygiene practices, HACCP system, and new risk management metrics such as the food safety objective. To follow this last recommendation, the use of quantitative microbiological risk assessment is an appealing approach to link new risk‐based metrics to management options that may be applied by food operators. Through a specific case study, Listeria monocytogenes in soft cheese made from pasteurized milk, the objective of the present article is to practically show how quantitative risk assessment could be used to direct potential intervention strategies at different food processing steps. Based on many assumptions, the model developed estimates the risk of listeriosis at the moment of consumption taking into account the entire manufacturing process and potential sources of contamination. From pasteurization to consumption, the amplification of a primo‐contamination event of the milk, the fresh cheese or the process environment is simulated, over time, space, and between products, accounting for the impact of management options, such as hygienic operations and sampling plans. A sensitivity analysis of the model will help orientating data to be collected prioritarily for the improvement and the validation of the model. What‐if scenarios were simulated and allowed for the identification of major parameters contributing to the risk of listeriosis and the optimization of preventive and corrective measures.  相似文献   

3.
Regulatory agencies often perform microbial risk assessments to evaluate the change in the number of human illnesses as the result of a new policy that reduces the level of contamination in the food supply. These agencies generally have regulatory authority over the production and retail sectors of the farm‐to‐table continuum. Any predicted change in contamination that results from new policy that regulates production practices occurs many steps prior to consumption of the product. This study proposes a framework for conducting microbial food‐safety risk assessments; this framework can be used to quantitatively assess the annual effects of national regulatory policies. Advantages of the framework are that estimates of human illnesses are consistent with national disease surveillance data (which are usually summarized on an annual basis) and some of the modeling steps that occur between production and consumption can be collapsed or eliminated. The framework leads to probabilistic models that include uncertainty and variability in critical input parameters; these models can be solved using a number of different Bayesian methods. The Bayesian synthesis method performs well for this application and generates posterior distributions of parameters that are relevant to assessing the effect of implementing a new policy. An example, based on Campylobacter and chicken, estimates the annual number of illnesses avoided by a hypothetical policy; this output could be used to assess the economic benefits of a new policy. Empirical validation of the policy effect is also examined by estimating the annual change in the numbers of illnesses observed via disease surveillance systems.  相似文献   

4.
Dose‐response models in microbial risk assessment consider two steps in the process ultimately leading to illness: from exposure to (asymptomatic) infection, and from infection to (symptomatic) illness. Most data and theoretical approaches are available for the exposure‐infection step; the infection‐illness step has received less attention. Furthermore, current microbial risk assessment models do not account for acquired immunity. These limitations may lead to biased risk estimates. We consider effects of both dose dependency of the conditional probability of illness given infection, and acquired immunity to risk estimates, and demonstrate their effects in a case study on exposure to Campylobacter jejuni. To account for acquired immunity in risk estimates, an inflation factor is proposed. The inflation factor depends on the relative rates of loss of protection over exposure. The conditional probability of illness given infection is based on a previously published model, accounting for the within‐host dynamics of illness. We find that at low (average) doses, the infection‐illness model has the greatest impact on risk estimates, whereas at higher (average) doses and/or increased exposure frequencies, the acquired immunity model has the greatest impact. The proposed models are strongly nonlinear, and reducing exposure is not expected to lead to a proportional decrease in risk and, under certain conditions, may even lead to an increase in risk. The impact of different dose‐response models on risk estimates is particularly pronounced when introducing heterogeneity in the population exposure distribution.  相似文献   

5.
Rozell DJ  Reaven SJ 《Risk analysis》2012,32(8):1382-1393
In recent years, shale gas formations have become economically viable through the use of horizontal drilling and hydraulic fracturing. These techniques carry potential environmental risk due to their high water use and substantial risk for water pollution. Using probability bounds analysis, we assessed the likelihood of water contamination from natural gas extraction in the Marcellus Shale. Probability bounds analysis is well suited when data are sparse and parameters highly uncertain. The study model identified five pathways of water contamination: transportation spills, well casing leaks, leaks through fractured rock, drilling site discharge, and wastewater disposal. Probability boxes were generated for each pathway. The potential contamination risk and epistemic uncertainty associated with hydraulic fracturing wastewater disposal was several orders of magnitude larger than the other pathways. Even in a best-case scenario, it was very likely that an individual well would release at least 200 m3 of contaminated fluids. Because the total number of wells in the Marcellus Shale region could range into the tens of thousands, this substantial potential risk suggested that additional steps be taken to reduce the potential for contaminated fluid leaks. To reduce the considerable epistemic uncertainty, more data should be collected on the ability of industrial and municipal wastewater treatment facilities to remove contaminants from used hydraulic fracturing fluid.  相似文献   

6.
Cheese smearing is a complex process and the potential for cross-contamination with pathogenic or undesirable microorganisms is critical. During ripening, cheeses are salted and washed with brine to develop flavor and remove molds that could develop on the surfaces. Considering the potential for cross-contamination of this process in quantitative risk assessments could contribute to a better understanding of this phenomenon and, eventually, improve its control. The purpose of this article is to model the cross-contamination of smear-ripened cheeses due to the smearing operation under industrial conditions. A compartmental, dynamic, and stochastic model is proposed for mechanical brush smearing. This model has been developed to describe the exchange of microorganisms between compartments. Based on the analytical solution of the model equations and on experimental data collected with an industrial smearing machine, we assessed the values of the transfer parameters of the model. Monte Carlo simulations, using the distributions of transfer parameters, provide the final number of contaminated products in a batch and their final level of contamination for a given scenario taking into account the initial number of contaminated cheeses of the batch and their contaminant load. Based on analytical results, the model provides indicators for smearing efficiency and propensity of the process for cross-contamination. Unlike traditional approaches in mechanistic models, our approach captures the variability and uncertainty inherent in the process and the experimental data. More generally, this model could represent a generic base to use in modeling similar processes prone to cross-contamination.  相似文献   

7.
Assessing within-batch and between-batch variability is of major interest for risk assessors and risk managers in the context of microbiological contamination of food. For example, the ratio between the within-batch variability and the between-batch variability has a large impact on the results of a sampling plan. Here, we designed hierarchical Bayesian models to represent such variability. Compatible priors were built mathematically to obtain sound model comparisons. A numeric criterion is proposed to assess the contamination structure comparing the ability of the models to replicate grouped data at the batch level using a posterior predictive loss approach. Models were applied to two case studies: contamination by Listeria monocytogenes of pork breast used to produce diced bacon and contamination by the same microorganism on cold smoked salmon at the end of the process. In the first case study, a contamination structure clearly exists and is located at the batch level, that is, between batches variability is relatively strong, whereas in the second a structure also exists but is less marked.  相似文献   

8.
The purpose of this article is to provide a risk‐based predictive model to assess the impact of false mussel Mytilopsis sallei invasions on hard clam Meretrix lusoria farms in the southwestern region of Taiwan. The actual spread of invasive false mussel was predicted by using analytical models based on advection‐diffusion and gravity models. The proportion of hard clam colonized and infestation by false mussel were used to characterize risk estimates. A mortality model was parameterized to assess hard clam mortality risk characterized by false mussel density and infestation intensity. The published data were reanalyzed to parameterize a predictive threshold model described by a cumulative Weibull distribution function that can be used to estimate the exceeding thresholds of proportion of hard clam colonized and infestation. Results indicated that the infestation thresholds were 2–17 ind clam?1 for adult hard clams, whereas 4 ind clam?1 for nursery hard clams. The average colonization thresholds were estimated to be 81–89% for cultivated and nursery hard clam farms, respectively. Our results indicated that false mussel density and infestation, which caused 50% hard clam mortality, were estimated to be 2,812 ind m?2 and 31 ind clam?1, respectively. This study further indicated that hard clam farms that are close to the coastal area have at least 50% probability for 43% mortality caused by infestation. This study highlighted that a probabilistic risk‐based framework characterized by probability distributions and risk curves is an effective representation of scientific assessments for farmed hard clam in response to the nonnative false mussel invasion.  相似文献   

9.
The inclusion of deep tissue lymph nodes (DTLNs) or nonvisceral lymph nodes contaminated with Salmonella in wholesale fresh ground pork (WFGP) production may pose risks to public health. To assess the relative contribution of DTLNs to human salmonellosis occurrence associated with ground pork consumption and to investigate potential critical control points in the slaughter‐to‐table continuum for the control of human salmonellosis in the United States, a quantitative microbial risk assessment (QMRA) model was established. The model predicted an average of 45 cases of salmonellosis (95% CI = [19, 71]) per 100,000 Americans annually due to WFGP consumption. Sensitivity analysis of all stochastic input variables showed that cooking temperature was the most influential parameter for reducing salmonellosis cases associated with WFGP meals, followed by storage temperature and Salmonella concentration on contaminated carcass surface before fabrication. The input variables were grouped to represent three main factors along the slaughter‐to‐table chain influencing Salmonella doses ingested via WFGP meals: DTLN‐related factors, factors at processing other than DTLNs, and consumer‐related factors. The evaluation of the impact of each group of factors by second‐order Monte Carlo simulation showed that DTLN‐related factors had the lowest impact on the risk estimate among the three groups of factors. These findings indicate that interventions to reduce Salmonella contamination in DTLNs or to remove DTLNs from WFGP products may be less critical for reducing human infections attributable to ground pork than improving consumers’ cooking habits or interventions of carcass decontamination at processing.  相似文献   

10.
A comprehensive methodology for economic consequence analysis with appropriate models for risk analysis of process systems is proposed. This methodology uses loss functions to relate process deviations in a given scenario to economic losses. It consists of four steps: definition of a scenario, identification of losses, quantification of losses, and integration of losses. In this methodology, the process deviations that contribute to a given accident scenario are identified and mapped to assess potential consequences. Losses are assessed with an appropriate loss function (revised Taguchi, modified inverted normal) for each type of loss. The total loss is quantified by integrating different loss functions. The proposed methodology has been examined on two industrial case studies. Implementation of this new economic consequence methodology in quantitative risk assessment will provide better understanding and quantification of risk. This will improve design, decision making, and risk management strategies.  相似文献   

11.
《Risk analysis》2018,38(8):1718-1737
We developed a probabilistic mathematical model for the postharvest processing of leafy greens focusing on Escherichia coli O157:H7 contamination of fresh‐cut romaine lettuce as the case study. Our model can (i) support the investigation of cross‐contamination scenarios, and (ii) evaluate and compare different risk mitigation options. We used an agent‐based modeling framework to predict the pathogen prevalence and levels in bags of fresh‐cut lettuce and quantify spread of E. coli O157:H7 from contaminated lettuce to surface areas of processing equipment. Using an unbalanced factorial design, we were able to propagate combinations of random values assigned to model inputs through different processing steps and ranked statistically significant inputs with respect to their impacts on selected model outputs. Results indicated that whether contamination originated on incoming lettuce heads or on the surface areas of processing equipment, pathogen prevalence among bags of fresh‐cut lettuce and batches was most significantly impacted by the level of free chlorine in the flume tank and frequency of replacing the wash water inside the tank. Pathogen levels in bags of fresh‐cut lettuce were most significantly influenced by the initial levels of contamination on incoming lettuce heads or surface areas of processing equipment. The influence of surface contamination on pathogen prevalence or levels in fresh‐cut bags depended on the location of that surface relative to the flume tank. This study demonstrates that developing a flexible yet mathematically rigorous modeling tool, a “virtual laboratory,” can provide valuable insights into the effectiveness of individual and combined risk mitigation options.  相似文献   

12.
Louis Anthony Cox  Jr. 《Risk analysis》2009,29(12):1664-1671
Do pollution emissions from livestock operations increase infant mortality rate (IMR)? A recent regression analysis of changes in IMR against changes in aggregate “animal units” (a weighted sum of cattle, pig, and poultry numbers) over time, for counties throughout the United States, suggested the provocative conclusion that they do: “[A] doubling of production leads to a 7.4% increase in infant mortality.” Yet, we find that regressing IMR changes against changes in specific components of “animal units” (cattle, pigs, and broilers) at the state level reveals statistically significant negative associations between changes in livestock production (especially, cattle production) and changes in IMR. We conclude that statistical associations between livestock variables and IMR variables are very sensitive to modeling choices (e.g., selection of explanatory variables, and use of specific animal types vs. aggregate “animal units). Such associations, whether positive or negative, do not warrant causal interpretation. We suggest that standard methods of quantitative risk assessment (QRA), including emissions release (source) models, fate and transport modeling, exposure assessment, and dose-response modeling, really are important—and indeed, perhaps, essential—for drawing valid causal inferences about health effects of exposures to guide sound, well-informed public health risk management policy. Reduced-form regression models, which skip most or all of these steps, can only quantify statistical associations (which may be due to model specification, variable selection, residual confounding, or other noncausal factors). Sound risk management requires the extra work needed to identify and model valid causal relations.  相似文献   

13.
Nontyphoidal salmonellosis is the second most frequently reported zoonotic disease in the European Union (EU) and is considered to be a major threat to human health worldwide. The most reported Salmonella serovar in the EU is S. Enteritidis, mainly associated with egg contamination, followed by S. Typhimurium, with the latter being the most predominant serovar isolated from pork. These findings suggest that reducing the Salmonella contamination in the pork production might be a good strategy to prevent and control human salmonellosis in the EU. Recently, a quantitative microbial risk assessment (QMRA) has been developed to assess the risks for human salmonellosis due to home consumption of fresh minced pork meat in Belgium.( 1 ) The newly developed risk model is called the METZOON model. In the current study, the METZOON model was used to evaluate the effectiveness of different hypothetical Salmonella mitigation strategies implemented at different stages of the minced pork production and consumption chain by means of a scenario analysis. To efficiently evaluate the mitigation strategies, model results were obtained by running simulations using the randomized complete block design. The effectiveness of a mitigation strategy is expressed using point and interval estimates of the effect size for dependent observations, expressed as the standardized difference in population means. The results indicate that the most effective strategies are taken during the slaughter processes of polishing, evisceration, and chilling, and during postprocessing, whereas interventions in the primary production and at the beginning of the slaughter process seem to have only a limited effect. Improving consumer awareness is found to be effective as well.  相似文献   

14.
Foodborne disease caused by nontyphoidal Salmonella (NTS) is one of the most important food safety issues worldwide. The objectives of this study were to carry out microbial monitoring on the prevalence of NTS in commercial ground pork, investigate consumption patterns, and conduct a quantitative microbiological risk assessment (QMRA) that considers cross-contamination to determine the risk caused by consuming ground pork and ready-to-eat food contaminated during food handling in the kitchen in Chengdu, China. The food pathway of ground pork was simplified and assumed to be several units according to the actual situation and our survey data, which were collected from our research or references and substituted into the QMRA model for simulation. The results showed that the prevalence of NTS in ground pork purchased in Chengdu was 69.64% (95% confidence interval [CI], 60.2–78.0), with a mean contamination level of −0.164 log CFU/g. After general cooking, NTS in ground pork could be eliminated (contamination level of zero). The estimated probability of causing salmonellosis per day was 9.43E-06 (95% CI: 8.82E-06–1.00E-05), while the estimated salmonellosis cases per million people per year were 3442 (95% CI: 3218–3666). According to the sensitivity analysis, the occurrence of cross-contamination was the most important factor affecting the probability of salmonellosis. To reduce the risk of salmonellosis caused by NTS through ground pork consumption, reasonable hygiene prevention and control measures should be adopted during food preparation to reduce cross-contamination. This study provides valuable information for household cooking and food safety management in China.  相似文献   

15.
The Monte Carlo (MC) simulation approach is traditionally used in food safety risk assessment to study quantitative microbial risk assessment (QMRA) models. When experimental data are available, performing Bayesian inference is a good alternative approach that allows backward calculation in a stochastic QMRA model to update the experts’ knowledge about the microbial dynamics of a given food‐borne pathogen. In this article, we propose a complex example where Bayesian inference is applied to a high‐dimensional second‐order QMRA model. The case study is a farm‐to‐fork QMRA model considering genetic diversity of Bacillus cereus in a cooked, pasteurized, and chilled courgette purée. Experimental data are Bacillus cereus concentrations measured in packages of courgette purées stored at different time‐temperature profiles after pasteurization. To perform a Bayesian inference, we first built an augmented Bayesian network by linking a second‐order QMRA model to the available contamination data. We then ran a Markov chain Monte Carlo (MCMC) algorithm to update all the unknown concentrations and unknown quantities of the augmented model. About 25% of the prior beliefs are strongly updated, leading to a reduction in uncertainty. Some updates interestingly question the QMRA model.  相似文献   

16.
A quantitative microbiological risk assessment model describes the transmission of Campylobacter through the broiler meat production chain and at home, from entering the processing plant until consumption of a chicken breast fillet meal. The exposure model is linked to a dose-response model to allow estimation of the incidence of human campylobacteriosis. The ultimate objective of the model is to serve as a tool to assess the effects of interventions to reduce campylobacteriosis in the Netherlands. The model describes some basic mechanistics of processing, including the nonlinear effects of cross-contamination between carcasses and their leaking feces. Model input is based on the output of an accompanying farm model and Dutch count data of Campylobacters on the birds' exterior and in the feces. When processing data are lacking, expert judgment is used for model parameter estimation. The model shows that to accurately assess of the effects of interventions, numbers of Campylobacter have to be explicitly incorporated in the model in addition to the prevalence of contamination. Also, as count data usually vary by several orders of magnitude, variability in numbers within and especially between flocks has to be accounted for. Flocks with high concentrations of Campylobacter in the feces that leak from the carcasses during industrial processing seem to have a dominant impact on the human incidence. The uncertainty in the final risk estimate is large, due to a large uncertainty at several stages of the chain. Among others, more quantitative count data at several stages of the production chain are needed to decrease this uncertainty. However, this uncertainty is smaller when relative risks of interventions are calculated with the model. Hence, the model can be effectively used by risk management in deciding on strategies to reduce human campylobacteriosis.  相似文献   

17.
Thomas Oscar 《Risk analysis》2021,41(1):110-130
Salmonella is a leading cause of foodborne illness (i.e., salmonellosis) outbreaks, which on occasion are attributed to ground turkey. The poultry industry uses Salmonella prevalence as an indicator of food safety. However, Salmonella prevalence is only one of several factors that determine risk of salmonellosis. Consequently, a model for predicting risk of salmonellosis from individual lots of ground turkey as a function of Salmonella prevalence and other risk factors was developed. Data for Salmonella contamination (prevalence, number, and serotype) of ground turkey were collected at meal preparation. Scenario analysis was used to evaluate effects of model variables on risk of salmonellosis. Epidemiological data were used to simulate Salmonella serotype virulence in a dose‐response model that was based on human outbreak and feeding trial data. Salmonella prevalence was 26% (n = 100) per 25 g of ground turkey, whereas Salmonella number ranged from 0 to 1.603 with a median of 0.185 log per 25 g. Risk of salmonellosis (total arbitrary units (AU) per lot) was affected (p ≤ 0.05) by Salmonella prevalence, number, and virulence, by incidence and extent of undercooking, and by food consumption behavior and host resistance but was not (p > 0.05) affected by serving size, serving size distribution, or total bacterial load of ground turkey when all other risk factors were held constant. When other risk factors were not held constant, Salmonella prevalence was not correlated (r = ?0.39; p = 0.21) with risk of salmonellosis. Thus, Salmonella prevalence alone was not a good indicator of poultry food safety because other factors were found to alter risk of salmonellosis. In conclusion, a more holistic approach to poultry food safety, such as the process risk model developed in the present study, is needed to better protect public health from foodborne pathogens like Salmonella.  相似文献   

18.

The impact of work stressors and work-related resources on emotional exhaustion and depersonalization, as the two core factors of burnout, is investigated. According to the German Action Regulation Theory work stressors are conceptualized as regulation problems that lead to work stress in terms of additional effort (e.g. working longer hours), increased intensity of effort (e.g. working at a faster pace), and risky action (e.g. by neglecting safety rules). Consequently, an extended process model consisting of objective work stressors, work stress, emotional exhaustion and depersonalization is proposed. Nurses from three general hospitals (N=482) provided data for evaluating this model. Complete mediation of work stress and emotional exhaustion were analysed by hierarchical regression analysis. The overall model was tested by structural equation analysis in two steps; in the first step the basic model was analysed while in the second step the model was extended by autonomy as a work-related resource. The process model could be confirmed with respect to: (1) the mediating function of work stress and emotional exhaustion, and with regard to (2) the direct impact of autonomy as a work-related resource on work stressors but not on emotional exhaustion and depersonalization. Methodological considerations and implications for work design and burnout prevention are discussed.  相似文献   

19.
We used an agent‐based modeling (ABM) framework and developed a mathematical model to explain the complex dynamics of microbial persistence and spread within a food facility and to aid risk managers in identifying effective mitigation options. The model explicitly considered personal hygiene practices by food handlers as well as their activities and simulated a spatially explicit dynamic system representing complex interaction patterns among food handlers, facility environment, and foods. To demonstrate the utility of the model in a decision‐making context, we created a hypothetical case study and used it to compare different risk mitigation strategies for reducing contamination and spread of Listeria monocytogenes in a food facility. Model results indicated that areas with no direct contact with foods (e.g., loading dock and restroom) can serve as contamination niches and recontaminate areas that have direct contact with food products. Furthermore, food handlers’ behaviors, including, for example, hygiene and sanitation practices, can impact the persistence of microbial contamination in the facility environment and the spread of contamination to prepared foods. Using this case study, we also demonstrated benefits of an ABM framework for addressing food safety in a complex system in which emergent system‐level responses are predicted using a bottom‐up approach that observes individual agents (e.g., food handlers) and their behaviors. Our model can be applied to a wide variety of pathogens, food commodities, and activity patterns to evaluate efficacy of food‐safety management practices and quantify contamination reductions associated with proposed mitigation strategies in food facilities.  相似文献   

20.
Listeria monocytogenes is among the foodborne pathogens with the highest death toll in the United States. Ready‐to‐eat foods contaminated at retail are an important source of infection. Environmental sites in retail deli operations can be contaminated. However, commonly contaminated sites are unlikely to come into direct contact with food and the public health relevance of environmental contamination has remained unclear. To identify environmental sites that may pose a considerable cross‐contamination risk, to elucidate potential transmission pathways, and to identify knowledge gaps, we performed a structured expert elicitation of 41 experts from state regulatory agencies and the food retail industry with practical experience in retail deli operations. Following the “Delphi” method, the elicitation was performed in three consecutive steps: questionnaire, review and discussion of results, second questionnaire. Hands and gloves were identified as important potential contamination sources. However, bacterial transfers to and from hands or gloves represented a major data gap. Experts agreed about transfer probabilities from cutting boards, scales, deli cases, and deli preparation sinks to product, and about transfer probabilities from floor drains, walk‐in cooler floors, and knife racks to food contact surfaces. Comparison of experts' opinions to observational data revealed a tendency among experts with certain demographic characteristics and professional opinions to overestimate prevalence. Experts’ votes clearly clustered into separate groups not defined by place of employment, even though industry experts may have been somewhat overrepresented in one cluster. Overall, our study demonstrates the value and caveats of expert elicitation to identify data gaps and prioritize research efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号