首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Epidemiology and quantitative microbiological risk assessment are disciplines in which the same public health measures are estimated, but results differ frequently. If large, these differences can confuse public health policymakers. This article aims to identify uncertainty sources that explain apparent differences in estimates for Campylobacter spp. incidence and attribution in the Netherlands, based on four previous studies (two for each discipline). An uncertainty typology was used to identify uncertainty sources and the NUSAP method was applied to characterize the uncertainty and its influence on estimates. Model outcomes were subsequently calculated for alternative scenarios that simulated very different but realistic alternatives in parameter estimates, modeling, data handling, or analysis to obtain impressions of the total uncertainty. For the epidemiological assessment, 32 uncertainty sources were identified and for QMRA 67. Definitions (e.g., of a case) and study boundaries (e.g., of the studied pathogen) were identified as important drivers for the differences between the estimates of the original studies. The range in alternatively calculated estimates usually overlapped between disciplines, showing that proper appreciation of uncertainty can explain apparent differences between the initial estimates from both disciplines. Uncertainty was not estimated in the original QMRA studies and underestimated in the epidemiological studies. We advise to give appropriate attention to uncertainty in QMRA and epidemiological studies, even if only qualitatively, so that scientists and policymakers can interpret reported outcomes more correctly. Ideally, both disciplines are joined by merging their strong respective properties, leading to unified public health measures.  相似文献   

2.
Foodborne disease caused by nontyphoidal Salmonella (NTS) is one of the most important food safety issues worldwide. The objectives of this study were to carry out microbial monitoring on the prevalence of NTS in commercial ground pork, investigate consumption patterns, and conduct a quantitative microbiological risk assessment (QMRA) that considers cross-contamination to determine the risk caused by consuming ground pork and ready-to-eat food contaminated during food handling in the kitchen in Chengdu, China. The food pathway of ground pork was simplified and assumed to be several units according to the actual situation and our survey data, which were collected from our research or references and substituted into the QMRA model for simulation. The results showed that the prevalence of NTS in ground pork purchased in Chengdu was 69.64% (95% confidence interval [CI], 60.2–78.0), with a mean contamination level of −0.164 log CFU/g. After general cooking, NTS in ground pork could be eliminated (contamination level of zero). The estimated probability of causing salmonellosis per day was 9.43E-06 (95% CI: 8.82E-06–1.00E-05), while the estimated salmonellosis cases per million people per year were 3442 (95% CI: 3218–3666). According to the sensitivity analysis, the occurrence of cross-contamination was the most important factor affecting the probability of salmonellosis. To reduce the risk of salmonellosis caused by NTS through ground pork consumption, reasonable hygiene prevention and control measures should be adopted during food preparation to reduce cross-contamination. This study provides valuable information for household cooking and food safety management in China.  相似文献   

3.
We developed a quantitative risk assessment model using a discrete event framework to quantify and study the risk associated with norovirus transmission to consumers through food contaminated by infected food employees in a retail food setting. This study focused on the impact of ill food workers experiencing symptoms of diarrhea and vomiting and potential control measures for the transmission of norovirus to foods. The model examined the behavior of food employees regarding exclusion from work while ill and after symptom resolution and preventive measures limiting food contamination during preparation. The mean numbers of infected customers estimated for 21 scenarios were compared to the estimate for a baseline scenario representing current practices. Results show that prevention strategies examined could not prevent norovirus transmission to food when a symptomatic employee was present in the food establishment. Compliance with exclusion from work of symptomatic food employees is thus critical, with an estimated range of 75–226% of the baseline mean for full to no compliance, respectively. Results also suggest that efficient handwashing, handwashing frequency associated with gloving compliance, and elimination of contact between hands, faucets, and door handles in restrooms reduced the mean number of infected customers to 58%, 62%, and 75% of the baseline, respectively. This study provides quantitative data to evaluate the relative efficacy of policy and practices at retail to reduce norovirus illnesses and provides new insights into the interactions and interplay of prevention strategies and compliance in reducing transmission of foodborne norovirus.  相似文献   

4.
We develop a prioritization framework for foodborne risks that considers public health impact as well as three other factors (market impact, consumer risk acceptance and perception, and social sensitivity). Canadian case studies are presented for six pathogen‐food combinations: Campylobacter spp. in chicken; Salmonella spp. in chicken and spinach; Escherichia coli O157 in spinach and beef; and Listeria monocytogenes in ready‐to‐eat meats. Public health impact is measured by disability‐adjusted life years and the cost of illness. Market impact is quantified by the economic importance of the domestic market. Likert‐type scales are used to capture consumer perception and acceptance of risk and social sensitivity to impacts on vulnerable consumer groups and industries. Risk ranking is facilitated through the development of a knowledge database presented in the format of info cards and the use of multicriteria decision analysis (MCDA) to aggregate the four factors. Three scenarios representing different stakeholders illustrate the use of MCDA to arrive at rankings of pathogen‐food combinations that reflect different criteria weights. The framework provides a flexible instrument to support policymakers in complex risk prioritization decision making when different stakeholder groups are involved and when multiple pathogen‐food combinations are compared.  相似文献   

5.
The disease burden of pathogens as estimated by QMRA (quantitative microbial risk assessment) and EA (epidemiological analysis) often differs considerably. This is an unsatisfactory situation for policymakers and scientists. We explored methods to obtain a unified estimate using campylobacteriosis in the Netherlands as an example, where previous work resulted in estimates of 4.9 million (QMRA) and 90,600 (EA) cases per year. Using the maximum likelihood approach and considering EA the gold standard, the QMRA model could produce the original EA estimate by adjusting mainly the dose‐infection relationship. Considering QMRA the gold standard, the EA model could produce the original QMRA estimate by adjusting mainly the probability that a gastroenteritis case is caused by Campylobacter. A joint analysis of QMRA and EA data and models assuming identical outcomes, using a frequentist or Bayesian approach (using vague priors), resulted in estimates of 102,000 or 123,000 campylobacteriosis cases per year, respectively. These were close to the original EA estimate, and this will be related to the dissimilarity in data availability. The Bayesian approach further showed that attenuating the condition of equal outcomes immediately resulted in very different estimates of the number of campylobacteriosis cases per year and that using more informative priors had little effect on the results. In conclusion, EA was dominant in estimating the burden of campylobacteriosis in the Netherlands. However, it must be noted that only statistical uncertainties were taken into account here. Taking all, usually difficult to quantify, uncertainties into account might lead to a different conclusion.  相似文献   

6.
To reduce consumer health risks from foodborne diseases that result from improper domestic food handling, consumers need to know how to safely handle food. To realize improvements in public health, it is necessary to develop interventions that match the needs of individual consumers. Successful intervention strategies are therefore contingent on identifying not only the practices that are important for consumer protection, but also barriers that prevent consumers from responding to these interventions. A measure of food safety behavior is needed to assess the effectiveness of different intervention strategies across different groups of consumers. A nationally representative survey was conducted in the Netherlands to determine which practices are likely conducted by which consumers. Participants reported their behaviors with respect to 55 different food-handling practices. The Rasch modeling technique was used to determine a general measure for the likelihood of an average consumer performing each food-handling behavior. Simultaneously, an average performance measure was estimated for each consumer. These two measures can be combined to predict the likelihood that an individual consumer engages in a specific food-handling behavior. A single "food safety" dimension was shown to underlie all items. Some potentially safe practices (e.g., use of meat thermometers) were reported as very difficult, while other safe practices were conducted by respondents more frequently (e.g., washing of fresh fruit and vegetables). A cluster analysis was applied to the resulting data set, and five segments of consumers were identified. Different behaviors may have different effects on microbial growth in food, and thus have different consequences for human health. Once the microbial relevance of the different consumer behaviors has been confirmed by experiments and modeling, the scale developed in the research reported here can be used to develop risk communication targeted to the needs of different consumer groups, as well as to measure the efficacy of different interventions.  相似文献   

7.
Consumer Phase Risk Assessment for Listeria monocytogenes in Deli Meats   总被引:1,自引:0,他引:1  
The foodborne disease risk associated with the pathogen Listeria monocytogenes has been the subject of recent efforts in quantitative microbial risk assessment. Building upon one of these efforts undertaken jointly by the U.S. Food and Drug Administration and the U.S. Department of Agriculture (USDA), the purpose of this work was to expand on the consumer phase of the risk assessment to focus on handling practices in the home. One-dimensional Monte Carlo simulation was used to model variability in growth and cross-contamination of L. monocytogenes during food storage and preparation of deli meats. Simulations approximated that 0.3% of the servings were contaminated with >10(4) CFU/g of L. monocytogenes at the time of consumption. The estimated mean risk associated with the consumption of deli meats for the intermediate-age population was approximately 7 deaths per 10(11) servings. Food handling in homes increased the estimated mean mortality by 10(6)-fold. Of all the home food-handling practices modeled, inadequate storage, particularly refrigeration temperatures, provided the greatest contribution to increased risk. The impact of cross-contamination in the home was considerably less. Adherence to USDA Food Safety and Inspection Service recommendations for consumer handling of ready-to-eat foods substantially reduces the risk of listeriosis.  相似文献   

8.
The current quantitative risk assessment model followed the framework proposed by the Codex Alimentarius to provide an estimate of the risk of human salmonellosis due to consumption of chicken breasts which were bought from Canadian retail stores and prepared in Canadian domestic kitchens. The model simulated the level of Salmonella contamination on chicken breasts throughout the retail‐to‐table pathway. The model used Canadian input parameter values, where available, to represent risk of salmonellosis. From retail until consumption, changes in the concentration of Salmonella on each chicken breast were modeled using equations for growth and inactivation. The model predicted an average of 318 cases of salmonellosis per 100,000 consumers per year. Potential reasons for this overestimation were discussed. A sensitivity analysis showed that concentration of Salmonella on chicken breasts at retail and food hygienic practices in private kitchens such as cross‐contamination due to not washing cutting boards (or utensils) and hands after handling raw meat along with inadequate cooking contributed most significantly to the risk of human salmonellosis. The outcome from this model emphasizes that responsibility for protection from Salmonella hazard on chicken breasts is a shared responsibility. Data needed for a comprehensive Canadian Salmonella risk assessment were identified for future research.  相似文献   

9.
Jocelyne Rocourt 《Risk analysis》2012,32(10):1798-1819
We used a quantitative microbiological risk assessment model to describe the risk of Campylobacter and Salmonella infection linked to chicken meals prepared in households in Dakar, Senegal. The model uses data collected specifically for this study, such as the prevalence and level of bacteria on the neck skin of chickens bought in Dakar markets, time‐temperature profiles recorded from purchase to consumption, an observational survey of meal preparation in private kitchens, and detection and enumeration of pathogens on kitchenware and cooks’ hands. Thorough heating kills all bacteria present on chicken during cooking, but cross‐contamination of cooked chicken or ready‐to‐eat food prepared for the meal via kitchenware and cooks’ hands leads to a high expected frequency of pathogen ingestion. Additionally, significant growth of Salmonella is predicted during food storage at ambient temperature before and after meal preparation. These high exposures lead to a high estimated risk of campylobacteriosis and/or salmonellosis in Dakar households. The public health consequences could be amplified by the high level of antimicrobial resistance of Salmonella and Campylobacter observed in this setting. A significant decrease in the number of ingested bacteria and in the risk could be achieved through a reduction of the prevalence of chicken contamination at slaughter, and by the use of simple hygienic measures in the kitchen. There is an urgent need to reinforce the hygiene education of food handlers in Senegal.  相似文献   

10.
The Monte Carlo (MC) simulation approach is traditionally used in food safety risk assessment to study quantitative microbial risk assessment (QMRA) models. When experimental data are available, performing Bayesian inference is a good alternative approach that allows backward calculation in a stochastic QMRA model to update the experts’ knowledge about the microbial dynamics of a given food‐borne pathogen. In this article, we propose a complex example where Bayesian inference is applied to a high‐dimensional second‐order QMRA model. The case study is a farm‐to‐fork QMRA model considering genetic diversity of Bacillus cereus in a cooked, pasteurized, and chilled courgette purée. Experimental data are Bacillus cereus concentrations measured in packages of courgette purées stored at different time‐temperature profiles after pasteurization. To perform a Bayesian inference, we first built an augmented Bayesian network by linking a second‐order QMRA model to the available contamination data. We then ran a Markov chain Monte Carlo (MCMC) algorithm to update all the unknown concentrations and unknown quantities of the augmented model. About 25% of the prior beliefs are strongly updated, leading to a reduction in uncertainty. Some updates interestingly question the QMRA model.  相似文献   

11.
Many farmers in water‐scarce regions of developing countries use wastewater to irrigate vegetables and other agricultural crops, a practice that may expand with climate change. There are a number of health risks associated with wastewater irrigation for human food crops, particularly with surface irrigation techniques common in the developing world. The World Health Organization (WHO) recommends using quantitative microbial risk assessment (QMRA) to determine if the irrigation scheme meets health standards. However, only a few vegetables have been studied for wastewater risk and little information is known about the disease burden of wastewater‐irrigated vegetable consumption in China. To bridge this knowledge gap, an experiment was conducted to determine volume of water left on Asian vegetables and lettuce after irrigation. One hundred samples each of Chinese chard (Brassica rapa var. chinensis), Chinese broccoli (Brassica oleracea var. alboglabra), Chinese flowering cabbage (Brassica rapa var. parachinensis), and lettuce (Lactuca sativa) were harvested after overhead sprinkler irrigation. Chinese broccoli and flowering cabbage were found to capture the most water and lettuce the least. QMRAs were then constructed to estimate rotavirus disease burden from consumption of wastewater‐irrigated Asian vegetables in Beijing. Results indicate that estimated risks from these reuse scenarios exceed WHO guideline thresholds for acceptable disease burden for wastewater use, signifying that reduction of pathogen concentration or stricter risk management is necessary for safe reuse. Considering the widespread practice of wastewater irrigation for food production, particularly in developing countries, incorporation of water retention factors in QMRAs can reduce uncertainty regarding health risks for consumers worldwide.  相似文献   

12.
T. Walton 《Risk analysis》2012,32(7):1122-1138
Through the use of case‐control analyses and quantitative microbial risk assessment (QMRA), relative risks of transmission of cryptosporidiosis have been evaluated (recreational water exposure vs. drinking water consumption) for a Canadian community with higher than national rates of cryptosporidiosis. A QMRA was developed to assess the risk of Cryptosporidium infection through the consumption of municipally treated drinking water. Simulations were based on site‐specific surface water contamination levels and drinking water treatment log10 reduction capacity for Cryptosporidium. Results suggested that the risk of Cryptosporidium infection via drinking water in the study community, assuming routine operation of the water treatment plant, was negligible (6 infections per 1013 persons per day—5th percentile: 2 infections per 1015 persons per day; 95th percentile: 3 infections per 1012 persons per day). The risk is essentially nonexistent during optimized, routine treatment operations. The study community achieves between 7 and 9 log10Cryptosporidium oocyst reduction through routine water treatment processes. Although these results do not preclude the need for constant vigilance by both water treatment and public health professionals in this community, they suggest that the cause of higher rates of cryptosporidiosis are more likely due to recreational water contact, or perhaps direct animal contact. QMRA can be successfully applied at the community level to identify data gaps, rank relative public health risks, and forecast future risk scenarios. It is most useful when performed in a collaborative way with local stakeholders, from beginning to end of the risk analysis paradigm.  相似文献   

13.
The JFDA applies border control for Salmonella Typhimurium and Salmonella Enteritidis in frozen poultry products. A QMRA model was developed to evaluate the effectiveness of this system in controlling the risk for consumers. The model consists of three modules; consumer phase, risk estimation, and risk reduction. The model inputs were the occurrence of Salmonella in different types of imported poultry products, the LOD of the Rapid’Salmonella, the number of tested samples of each batch, and the criteria for rejection. The model outputs were public health impact as the Minimum Relative Residual Risk (MRRR) given the batches’ refusal and the percentage of Batches that are Not-compliant with the Microbiological Criteria (BNMC) of rejection. To estimate the overall MRRR of the border control, the estimated country and product-specific MRRR were summarized and weighted by the total imports of each product from each country. The current border control based on one sample per batch gives an overall MRRR value of 27%. The alternative scenarios based on three and five samples per batch are 12% and 8%, respectively. Overall, the higher the prevalence and/or concentration of Salmonella in imported products, the more the likelihood that batches will be rejected. For products with up-to-date data of occurrence, the estimated BNMC was similar to the observed proportion of rejected batches. The lack of data on the Salmonella concentrations in poultry products from different countries is the major source of the uncertainties in the model. It reduces our opportunities to obtain valid estimates of the absolute risk.  相似文献   

14.
The application of quantitative microbial risk assessments (QMRAs) to understand and mitigate risks associated with norovirus is increasingly common as there is a high frequency of outbreaks worldwide. A key component of QMRA is the dose–response analysis, which is the mathematical characterization of the association between dose and outcome. For Norovirus, multiple dose–response models are available that assume either a disaggregated or an aggregated intake dose. This work reviewed the dose–response models currently used in QMRA, and compared predicted risks from waterborne exposures (recreational and drinking) using all available dose–response models. The results found that the majority of published QMRAs of norovirus use the 1F1 hypergeometric dose–response model with α = 0.04, β = 0.055. This dose–response model predicted relatively high risk estimates compared to other dose–response models for doses in the range of 1–1,000 genomic equivalent copies. The difference in predicted risk among dose–response models was largest for small doses, which has implications for drinking water QMRAs where the concentration of norovirus is low. Based on the review, a set of best practices was proposed to encourage the careful consideration and reporting of important assumptions in the selection and use of dose–response models in QMRA of norovirus. Finally, in the absence of one best norovirus dose–response model, multiple models should be used to provide a range of predicted outcomes for probability of infection.  相似文献   

15.
We describe a one-dimensional probabilistic model of the role of domestic food handling behaviors on salmonellosis risk associated with the consumption of eggs and egg-containing foods. Six categories of egg-containing foods were defined based on the amount of egg contained in the food, whether eggs are pooled, and the degree of cooking practiced by consumers. We used bootstrap simulation to quantify uncertainty in risk estimates due to sampling error, and sensitivity analysis to identify key sources of variability and uncertainty in the model. Because of typical model characteristics such as nonlinearity, interaction between inputs, thresholds, and saturation points, Sobol's method, a novel sensitivity analysis approach, was used to identify key sources of variability. Based on the mean probability of illness, examples of foods from the food categories ranked from most to least risk of illness were: (1) home-made salad dressings/ice cream; (2) fried eggs/boiled eggs; (3) omelettes; and (4) baked foods/breads. For food categories that may include uncooked eggs (e.g., home-made salad dressings/ice cream), consumer handling conditions such as storage time and temperature after food preparation were the key sources of variability. In contrast, for food categories associated with undercooked eggs (e.g., fried/soft-boiled eggs), the initial level of Salmonella contamination and the log10 reduction due to cooking were the key sources of variability. Important sources of uncertainty varied with both the risk percentile and the food category under consideration. This work adds to previous risk assessments focused on egg production and storage practices, and provides a science-based approach to inform consumer risk communications regarding safe egg handling practices.  相似文献   

16.
Climate change may impact waterborne and foodborne infectious disease, but to what extent is uncertain. Estimating climate‐change‐associated relative infection risks from exposure to viruses, bacteria, or parasites in water or food is critical for guiding adaptation measures. We present a computational tool for strategic decision making that describes the behavior of pathogens using location‐specific input data under current and projected climate conditions. Pathogen‐pathway combinations are available for exposure to norovirus, Campylobacter, Cryptosporidium, and noncholera Vibrio species via drinking water, bathing water, oysters, or chicken fillets. Infection risk outcomes generated by the tool under current climate conditions correspond with those published in the literature. The tool demonstrates that increasing temperatures lead to increasing risks for infection with Campylobacter from consuming raw/undercooked chicken fillet and for Vibrio from water exposure. Increasing frequencies of drought generally lead to an elevated infection risk of exposure to persistent pathogens such as norovirus and Cryptosporidium, but decreasing risk of exposure to rapidly inactivating pathogens, like Campylobacter. The opposite is the case with increasing annual precipitation; an upsurge of heavy rainfall events leads to more peaks in infection risks in all cases. The interdisciplinary tool presented here can be used to guide climate change adaptation strategies focused on infectious diseases.  相似文献   

17.
Over time, concerns have been raised regarding the potential for human exposure and risk from asbestos in cosmetic‐talc–containing consumer products. In 1985, the U.S. Food and Drug Administration (FDA) conducted a risk assessment evaluating the potential inhalation asbestos exposure associated with the cosmetic talc consumer use scenario of powdering an infant during diapering, and found that risks were below levels associated with background asbestos exposures and risk. However, given the scope and age of the FDA's assessment, it was unknown whether the agency's conclusions remained relevant to current risk assessment practices, talc application scenarios, and exposure data. This analysis updates the previous FDA assessment by incorporating the current published exposure literature associated with consumer use of talcum powder and using the current U.S. Environmental Protection Agency's (EPA) nonoccupational asbestos risk assessment approach to estimate potential cumulative asbestos exposure and risk for four use scenarios: (1) infant exposure during diapering; (2) adult exposure from infant diapering; (3) adult exposure from face powdering; and (4) adult exposure from body powdering. The estimated range of cumulative asbestos exposure potential for all scenarios (assuming an asbestos content of 0.1%) ranged from 0.0000021 to 0.0096 f/cc‐yr and resulted in risk estimates that were within or below EPA's acceptable target risk levels. Consistent with the original FDA findings, exposure and corresponding health risk in this range were orders of magnitude below upper‐bound estimates of cumulative asbestos exposure and risk at ambient levels, which have not been associated with increased incidence of asbestos‐related disease.  相似文献   

18.
Consumer Evaluations of Food Risk Management Quality in Europe   总被引:3,自引:0,他引:3  
In developing and implementing appropriate food risk management strategies, it is important to understand how consumers evaluate the quality of food risk management practices. The aim of this study is to model the underlying psychological factors influencing consumer evaluations of food risk management quality using structural equation modeling techniques (SEM), and to examine the extent to which the influence of these factors is country-specific (comparing respondents from Denmark, Germany, Greece, Slovenia, and the United Kingdom). A survey was developed to model the factors that drive consumer evaluations of food risk management practices and their relative importance (n= 2,533 total respondents). The measurement scales included in the structural model were configurally and metrically invariant across countries. Results show that some factors appear to drive perceptions of effective food risk management in all the countries studied, such as proactive consumer protection, which was positively related to consumers' evaluation of food risk management quality, while opaque and reactive risk management was negatively related to perceived food risk management quality. Other factors appeared to apply only in certain countries. For example, skepticism in risk assessment and communication practices was negatively related to food risk management quality, particularly so in the UK. Expertise of food risk managers appeared to be a key factor in consumers' evaluation of food risk management quality in some countries. However, trust in the honesty of food risk managers did not have a significant effect on food risk management quality. From the results, policy implications for food risk management are discussed and important directions for future research are identified.  相似文献   

19.
Modeling Logistic Performance in Quantitative Microbial Risk Assessment   总被引:1,自引:0,他引:1  
In quantitative microbial risk assessment (QMRA), food safety in the food chain is modeled and simulated. In general, prevalences, concentrations, and numbers of microorganisms in media are investigated in the different steps from farm to fork. The underlying rates and conditions (such as storage times, temperatures, gas conditions, and their distributions) are determined. However, the logistic chain with its queues (storages, shelves) and mechanisms for ordering products is usually not taken into account. As a consequence, storage times—mutually dependent in successive steps in the chain—cannot be described adequately. This may have a great impact on the tails of risk distributions. Because food safety risks are generally very small, it is crucial to model the tails of (underlying) distributions as accurately as possible. Logistic performance can be modeled by describing the underlying planning and scheduling mechanisms in discrete-event modeling. This is common practice in operations research, specifically in supply chain management. In this article, we present the application of discrete-event modeling in the context of a QMRA for  Listeria monocytogenes  in fresh-cut iceberg lettuce. We show the potential value of discrete-event modeling in QMRA by calculating logistic interventions (modifications in the logistic chain) and determining their significance with respect to food safety.  相似文献   

20.
Regulatory agencies often perform microbial risk assessments to evaluate the change in the number of human illnesses as the result of a new policy that reduces the level of contamination in the food supply. These agencies generally have regulatory authority over the production and retail sectors of the farm‐to‐table continuum. Any predicted change in contamination that results from new policy that regulates production practices occurs many steps prior to consumption of the product. This study proposes a framework for conducting microbial food‐safety risk assessments; this framework can be used to quantitatively assess the annual effects of national regulatory policies. Advantages of the framework are that estimates of human illnesses are consistent with national disease surveillance data (which are usually summarized on an annual basis) and some of the modeling steps that occur between production and consumption can be collapsed or eliminated. The framework leads to probabilistic models that include uncertainty and variability in critical input parameters; these models can be solved using a number of different Bayesian methods. The Bayesian synthesis method performs well for this application and generates posterior distributions of parameters that are relevant to assessing the effect of implementing a new policy. An example, based on Campylobacter and chicken, estimates the annual number of illnesses avoided by a hypothetical policy; this output could be used to assess the economic benefits of a new policy. Empirical validation of the policy effect is also examined by estimating the annual change in the numbers of illnesses observed via disease surveillance systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号