首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hundreds of billions of dollars have been spent in homeland security since September 11, 2001. Many mathematical models have been developed to study strategic interactions between governments (defenders) and terrorists (attackers). However, few studies have considered the tradeoff between equity and efficiency in homeland security resource allocation. In this article, we fill this gap by developing a novel model in which a government allocates defensive resources among multiple potential targets, while reserving a portion of defensive resources (represented by the equity coefficient) for equal distribution (according to geographical areas, population, density, etc.). Such a way to model equity is one of many alternatives, but was directly inspired by homeland security resource allocation practice. The government is faced with a strategic terrorist (adaptive adversary) whose attack probabilities are endogenously determined in the model. We study the effect of the equity coefficient on the optimal defensive resource allocations and the corresponding expected loss. We find that the cost of equity (in terms of increased expected loss) increases convexly in the equity coefficient. Furthermore, such cost is lower when: (a) government uses per‐valuation equity; (b) the cost‐effectiveness coefficient of defense increases; and (c) the total defense budget increases. Our model, results, and insights could be used to assist policy making.  相似文献   

2.
This article proposes, develops, and illustrates the application of level‐k game theory to adversarial risk analysis. Level‐k reasoning, which assumes that players play strategically but have bounded rationality, is useful for operationalizing a Bayesian approach to adversarial risk analysis. It can be applied in a broad class of settings, including settings with asynchronous play and partial but incomplete revelation of early moves. Its computational and elicitation requirements are modest. We illustrate the approach with an application to a simple defend‐attack model in which the defender's countermeasures are revealed with a probability less than one to the attacker before he decides on how or whether to attack.  相似文献   

3.
Attackers' private information is one of the main issues in defensive resource allocation games in homeland security. The outcome of a defense resource allocation decision critically depends on the accuracy of estimations about the attacker's attributes. However, terrorists' goals may be unknown to the defender, necessitating robust decisions by the defender. This article develops a robust-optimization game-theoretical model for identifying optimal defense resource allocation strategies for a rational defender facing a strategic attacker while the attacker's valuation of targets, being the most critical attribute of the attacker, is unknown but belongs to bounded distribution-free intervals. To our best knowledge, no previous research has applied robust optimization in homeland security resource allocation when uncertainty is defined in bounded distribution-free intervals. The key features of our model include (1) modeling uncertainty in attackers' attributes, where uncertainty is characterized by bounded intervals; (2) finding the robust-optimization equilibrium for the defender using concepts dealing with budget of uncertainty and price of robustness; and (3) applying the proposed model to real data.  相似文献   

4.
The United States is funding homeland security programs with a large budget (e.g., 74.4 billion for FY 2019). A number of game-theoretic defender–attacker models have been developed to study the optimal defense resource allocation strategies for the government (defender) against the strategic adversary (attacker). However, to the best of our knowledge, the substitution or complementary effects between different types of defensive resources (e.g., human resource, land resource, and capital resource) have not been taken into consideration even though they exist in practice. The article fills this gap by studying a sequential game-theoretical resource allocation model and then exploring how the joint effectiveness of multiple security investments influences the defensive budget allocation among multiple potential targets. Three false belief models have been developed in which only the defender, only the attacker, and both the defender and attacker hold false beliefs about the joint effectiveness of resources. Regression analysis shows that there are significant substitution effects between human and capital resources. The results show that the defender will suffer a higher loss if he fails to consider the substitution or complementary effects. Interestingly, if the attacker holds a false belief while the defender does not, the defender will suffer an even higher loss, especially when the resources are substitutes. However, if both the attacker and defender hold false beliefs, there will be lower loss when resources are complementary. The results also show that the defender should allocate the highly effective resource when the resources substitute each other. This article provides some new insights to the homeland security resource allocation.  相似文献   

5.
This article describes a risk analysis used to inform resource allocation at the Tucson Sector of the U.S. Border Patrol, the busiest sector for alien and drug trafficking along the Southwest land border with Mexico. The model and methodology that underlie this analysis are generally applicable to many resource allocation decisions regarding the management of frequently occurring hazards, decisions regularly made by officials at all levels of the homeland security enterprise. The analysis was executed by agents without previous risk expertise working under a short time frame, and the findings from the analysis were used to inform several resource allocation decisions.  相似文献   

6.
The outbreak of pandemics such as COVID-19 can result in cascading effects for global systemic risk. To combat an ongoing pandemic, governmental resources are largely allocated toward supporting the health of the public and economy. This shift in attention can lead to security vulnerabilities which are exploited by terrorists. In view of this, counterterrorism during a pandemic is of critical interest to the safety and well-being of the global society. Most notably, the population flows among potential targets are likely to change in conjunction with the trend of the health crisis, which leads to fluctuations in target valuations. In this situation, a new challenge for the defender is to optimally allocate his/her resources among targets that have changing valuations, where his/her intention is to minimize the expected losses from potential terrorist attacks. In order to deal with this challenge, in this paper, we first develop a defender–attacker game in sequential form, where the target valuations can change as a result of the pandemic. Then we analyze the effects of a pandemic on counterterrorism resource allocation from the perspective of dynamic target valuations. Finally, we provide some examples to display the theoretical results, and present a case study to illustrate the usability of our proposed model during a pandemic.  相似文献   

7.
This article presents ongoing research that focuses on efficient allocation of defense resources to minimize the damage inflicted on a spatially distributed physical network such as a pipeline, water system, or power distribution system from an attack by an active adversary, recognizing the fundamental difference between preparing for natural disasters such as hurricanes, earthquakes, or even accidental systems failures and the problem of allocating resources to defend against an opponent who is aware of, and anticipating, the defender's efforts to mitigate the threat. Our approach is to utilize a combination of integer programming and agent‐based modeling to allocate the defensive resources. We conceptualize the problem as a Stackelberg “leader follower” game where the defender first places his assets to defend key areas of the network, and the attacker then seeks to inflict the maximum damage possible within the constraints of resources and network structure. The criticality of arcs in the network is estimated by a deterministic network interdiction formulation, which then informs an evolutionary agent‐based simulation. The evolutionary agent‐based simulation is used to determine the allocation of resources for attackers and defenders that results in evolutionary stable strategies, where actions by either side alone cannot increase its share of victories. We demonstrate these techniques on an example network, comparing the evolutionary agent‐based results to a more traditional, probabilistic risk analysis (PRA) approach. Our results show that the agent‐based approach results in a greater percentage of defender victories than does the PRA‐based approach.  相似文献   

8.
We study a strategic model in which a defender must allocate defensive resources to a collection of locations, and an attacker must choose a location to attack. The defender does not know the attacker's preferences, while the attacker observes the defender's resource allocation. The defender's problem gives rise to negative externalities, in the sense that increasing the resources allocated to one location increases the likelihood of an attack at other locations. In equilibrium, the defender exploits these externalities to manipulate the attacker's behavior, sometimes optimally leaving a location undefended, and sometimes preferring a higher vulnerability at a particular location even if a lower risk could be achieved at zero cost. Key results of our model are as follows: (1) the defender prefers to allocate resources in a centralized (rather than decentralized) manner; (2) as the number of locations to be defended grows, the defender can cost effectively reduce the probability of a successful attack only if the number of valuable targets is bounded; (3) the optimal allocation of resources can be nonmonotonic in the relative value of the attacker's outside option; and (4) the defender prefers his or her defensive allocation to be public rather than secret.  相似文献   

9.
Humanitarian supply chains involve many different entities, such as government, military, private, and non‐governmental organizations and individuals. Well‐coordinated interactions between entities can lead to synergies and improved humanitarian outcomes. Information technology (IT) tools can help facilitate collaboration, but cost and other barriers have limited their use. We document the use of an IT tool to improve last‐mile supply distribution and data management in one of many camps for internally displaced persons after the January 2010 earthquake in Haiti, and we describe other current uses of technology in camp management. Motivated by these examples and the interest among humanitarian organizations in expanding the use of such tools to facilitate coordination, we introduce a cooperative game theory model and explore insights about the conditions under which multi‐agency coordination is feasible and desirable. We also outline an agenda for future research in the area of technology‐enabled collaboration in the humanitarian sector.  相似文献   

10.
《Risk analysis》2018,38(1):118-133
In security check systems, tighter screening processes increase the security level, but also cause more congestion, which could cause longer wait times. Having to deal with more congestion in lines could also cause issues for the screeners. The Transportation Security Administration (TSA) Precheck Program was introduced to create fast lanes in airports with the goal of expediting passengers who the TSA does not deem to be threats. In this lane, the TSA allows passengers to enjoy fewer restrictions in order to speed up the screening time. Motivated by the TSA Precheck Program, we study parallel queueing imperfect screening systems, where the potential normal and adversary participants/applicants decide whether to apply to the Precheck Program or not. The approved participants would be assigned to a faster screening channel based on a screening policy determined by an approver, who balances the concerns of safety of the passengers and congestion of the lines. There exist three types of optimal normal applicant's application strategy, which depend on whether the marginal payoff is negative or positive, or whether the marginal benefit equals the marginal cost. An adversary applicant would not apply when the screening policy is sufficiently large or the number of utilized benefits is sufficiently small. The basic model is extended by considering (1) applicants' parameters to follow different distributions and (2) applicants to have risk levels, where the approver determines the threshold value needed to qualify for Precheck. This article integrates game theory and queueing theory to study the optimal screening policy and provides some insights to imperfect parallel queueing screening systems.  相似文献   

11.
The current system for managing natural disaster risk in the United States is problematic for both homeowners and insurers. Homeowners are often uninsured or underinsured against natural disaster losses, and typically do not invest in retrofits that can reduce losses. Insurers often do not want to insure against these losses, which are some of their biggest exposures and can cause an undesirably high chance of insolvency. There is a need to design an improved system that acknowledges the different perspectives of the stakeholders. In this article, we introduce a new modeling framework to help understand and manage the insurer's role in catastrophe risk management. The framework includes a new game‐theoretic optimization model of insurer decisions that interacts with a utility‐based homeowner decision model and is integrated with a regional catastrophe loss estimation model. Reinsurer and government roles are represented as bounds on the insurer‐insured interactions. We demonstrate the model for a full‐scale case study for hurricane risk to residential buildings in eastern North Carolina; present the results from the perspectives of all stakeholders—primary insurers, homeowners (insured and uninsured), and reinsurers; and examine the effect of key parameters on the results.  相似文献   

12.
This article presents a new methodology to implement the concept of equity in regional earthquake risk mitigation programs using an optimization framework. It presents a framework that could be used by decisionmakers (government and authorities) to structure budget allocation strategy toward different seismic risk mitigation measures, i.e., structural retrofitting for different building structural types in different locations and planning horizons. A two‐stage stochastic model is developed here to seek optimal mitigation measures based on minimizing mitigation expenditures, reconstruction expenditures, and especially large losses in highly seismically active countries. To consider fairness in the distribution of financial resources among different groups of people, the equity concept is incorporated using constraints in model formulation. These constraints limit inequity to the user‐defined level to achieve the equity‐efficiency tradeoff in the decision‐making process. To present practical application of the proposed model, it is applied to a pilot area in Tehran, the capital city of Iran. Building stocks, structural vulnerability functions, and regional seismic hazard characteristics are incorporated to compile a probabilistic seismic risk model for the pilot area. Results illustrate the variation of mitigation expenditures by location and structural type for buildings. These expenditures are sensitive to the amount of available budget and equity consideration for the constant risk aversion. Most significantly, equity is more easily achieved if the budget is unlimited. Conversely, increasing equity where the budget is limited decreases the efficiency. The risk‐return tradeoff, equity‐reconstruction expenditures tradeoff, and variation of per‐capita expected earthquake loss in different income classes are also presented.  相似文献   

13.
We prove existence of equilibrium in a continuous‐time securities market in which the securities are potentially dynamically complete: the number of securities is at least one more than the number of independent sources of uncertainty. We prove that dynamic completeness of the candidate equilibrium price process follows from mild exogenous assumptions on the economic primitives of the model. Our result is universal, rather than generic: dynamic completeness of the candidate equilibrium price process and existence of equilibrium follow from the way information is revealed in a Brownian filtration, and from a mild exogenous nondegeneracy condition on the terminal security dividends. The nondegeneracy condition, which requires that finding one point at which a determinant of a Jacobian matrix of dividends is nonzero, is very easy to check. We find that the equilibrium prices, consumptions, and trading strategies are well‐behaved functions of the stochastic process describing the evolution of information. We prove that equilibria of discrete approximations converge to equilibria of the continuous‐time economy.  相似文献   

14.
Dispensing of mass prophylaxis can be critical to public health during emergency situations and involves complex decisions that must be made in a short period of time. This study presents a model and solution approach for optimizing point‐of‐dispensing (POD) location and capacity decisions. This approach is part of a decision support system designed to help officials prepare for and respond to public health emergencies. The model selects PODs from a candidate set and suggests how to staff each POD so that average travel and waiting times are minimized. A genetic algorithm (GA) quickly solves the problem based on travel and queuing approximations (QAs) and it has the ability to relax soft constraints when the dispensing goals cannot be met. We show that the proposed approach returns solutions comparable with other systems and it is able to evaluate alternative courses of action when the resources are not sufficient to meet the performance targets.  相似文献   

15.
Although project portfolio management has been an active research area over the past 50 years, budget allocation models that consider competition are sparse. Faced with the competition, firms contemplating budget allocation for their project portfolio cannot limit their attention to the returns from their projects' target markets, as is the case for monopoly firms, but must also anticipate the competitive effects on these returns. Assuming firms allocate their budgets between projects offering incremental innovation targeting a mature market and projects offering radical innovation targeting an emerging market, we show that while the monopoly firm bases its budget allocation decision solely on the marginal returns of the markets, competing firms—as they take into account their counterparts' investment decisions—need to also consider the projects' average returns from their respective markets. This drives competing firms into incrementalism: faced with competition, firms invest larger portions of their budgets into projects targeting mature markets. This effect is amplified as the number of competing firms increases and firms allocate an even greater share of their budget into projects targeting a mature market. We further demonstrate the effects that changes to firms' individual budgets, as well as to market characteristics, have on firms' budget allocation decision.  相似文献   

16.
The contract manufacturing industry has grown rapidly in recent years as firms have increasingly outsourced production to reduce costs. This growth has created powerful contract manufacturers (CMs) in several industries. Achieving a competitive cost position is often a primary motive for outsourcing. Outsourcing influences both the original equipment manufacturer's (OEM) and the CM's production levels, and, therefore, through learning‐by‐doing renders future costs dependent on past outsourcing decisions. As such, outsourcing should not be viewed as a static decision that, once made, is not revisited. We address these considerations by analyzing a two‐period game between an OEM and a powerful CM wherein both firms can reduce their production costs through learning‐by‐doing. We find that partial outsourcing, wherein the OEM simultaneously outsources and produces in‐house, can be an optimal strategy. Also, we find that the OEM's outsourcing strategy may be dynamic—i.e., change from period to period. In addition, we find both that the OEM may engage in production for leverage (i.e., produce internally when at a cost disadvantage) and that the CM may engage in low balling. These and other findings in this paper demonstrate the importance of considering learning, the power of the CM, and future periods when making outsourcing decisions.  相似文献   

17.
A probabilistic game‐theoretic model is developed within both a static and a dynamic framework to capture adversary–defender conflict in the presence of backlash. I find that not accounting for backlash in counteradversary policies may be costly to the target government. But to minimize adversarial backlash requires understanding how backlash emerges and if, and how, adversaries strategize to goad target governments into policies that induce backlash. The dynamic version of the model shows that when backlash occurs with a time lag, an escalation of the conflict is likely to occur.  相似文献   

18.
As waste from used electronic products grows steadily, manufacturers face take‐back regulations mandating its collection and proper treatment through recycling, or remanufacturing. Environmentalists greet such regulation with enthusiasm, but its effect on remanufacturing activity and industry competition remains unclear. We research these questions, using a stylized model with an original equipment manufacturer (OEM) facing competition from an independent remanufacturer (IR). We examine the effects of regulation on three key factors: remanufacturing levels, consumer surplus, and the OEM profit. First, we find that total OEM remanufacturing actually may decrease under high collection and/or reuse targets, meaning more stringent targets do not imply more remanufacturing. Consumer surplus and the OEM profit, meanwhile, may increase when OEM‐IR competition exists in a regulated market. Finally, through a numerical study, we investigate how total welfare changes in the collection target, what happens when the cost of collection is not linear, and what happens when IR products are valued differently by consumers.  相似文献   

19.
Most attacker–defender games consider players as risk neutral, whereas in reality attackers and defenders may be risk seeking or risk averse. This article studies the impact of players' risk preferences on their equilibrium behavior and its effect on the notion of deterrence. In particular, we study the effects of risk preferences in a single‐period, sequential game where a defender has a continuous range of investment levels that could be strategically chosen to potentially deter an attack. This article presents analytic results related to the effect of attacker and defender risk preferences on the optimal defense effort level and their impact on the deterrence level. Numerical illustrations and some discussion of the effect of risk preferences on deterrence and the utility of using such a model are provided, as well as sensitivity analysis of continuous attack investment levels and uncertainty in the defender's beliefs about the attacker's risk preference. A key contribution of this article is the identification of specific scenarios in which the defender using a model that takes into account risk preferences would be better off than a defender using a traditional risk‐neutral model. This study provides insights that could be used by policy analysts and decisionmakers involved in investment decisions in security and safety.  相似文献   

20.
Large‐scale outages on real‐world critical infrastructures, although infrequent, are increasingly disastrous to our society. In this article, we are primarily concerned with power transmission networks and we consider the problem of allocation of generation to distributors by rewiring links under the objectives of maximizing network resilience to cascading failure and minimizing investment costs. The combinatorial multiobjective optimization is carried out by a nondominated sorting binary differential evolution (NSBDE) algorithm. For each generators–distributors connection pattern considered in the NSBDE search, a computationally cheap, topological model of failure cascading in a complex network (named the Motter‐Lai [ML] model) is used to simulate and quantify network resilience to cascading failures initiated by targeted attacks. The results on the 400 kV French power transmission network case study show that the proposed method allows us to identify optimal patterns of generators–distributors connection that improve cascading resilience at an acceptable cost. To verify the realistic character of the results obtained by the NSBDE with the embedded ML topological model, a more realistic but also more computationally expensive model of cascading failures is adopted, based on optimal power flow (namely, the ORNL‐Pserc‐Alaska) model). The consistent results between the two models provide impetus for the use of topological, complex network theory models for analysis and optimization of large infrastructures against cascading failure with the advantages of simplicity, scalability, and low computational cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号