首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Econometric techniques to estimate output supply systems, factor demand systems and consumer demand systems have often required estimating a nonlinear system of equations that have an additive error structure when written in reduced form. To calculate the ML estimate's covariance matrix of this nonlinear system one can either invert the Hessian of the concentrated log likelihood function, or invert the matrix calculated by pre-multiplying and post multiplying the inverted MLE of the disturbance covariance matrix by the Jacobian of the reduced form model. Malinvaud has shown that the latter of these methods is the actual limiting distribution's covariance matrix, while Barnett has shown that the former is only an approximation.

In this paper, we use a Monte Carlo simulation study to determine how these two covariance matrices differ with respect to the nonlinearity of the model, the number of observations in the dataet, and the residual process. We find that the covariance matrix calculated from the Hessian of the concentrated likelihood function produces Wald statistics that are distributed above those calculated with the other covariance matrix. This difference becomes insignificant as the sample size increases to one-hundred or more observations, suggesting that the asymptotics of the two covariance matrices are quickly reached.  相似文献   

2.
We address the estimation of stochastic volatility demand systems. In particular, we relax the homoscedasticity assumption and instead assume that the covariance matrix of the errors of demand systems is time-varying. Since most economic and financial time series are nonlinear, we achieve superior modeling using parametric nonlinear demand systems in which the unconditional variance is constant but the conditional variance, like the conditional mean, is also a random variable depending on current and past information. We also prove an important practical result of invariance of the maximum likelihood estimator with respect to the choice of equation eliminated from a singular demand system. An empirical application is provided, using the BEKK specification to model the conditional covariance matrix of the errors of the basic translog demand system.  相似文献   

3.
Algorithms for computing the maximum likelihood estimators and the estimated covariance matrix of the estimators of the factor model are derived. The algorithms are particularly suitable for large matrices and for samples that give zero estimates of some error variances. A method of constructing estimators for reduced models is presented. The algorithms can also be used for the multivariate errors-in-variables model with known error covariance matrix.  相似文献   

4.
Estimation of covariance components in the multivariate random-effect model with nested covariance structure is discussed. There are two covariance matrices to be estimated, namely, the between-group and the within-group covariance matrices. These two covariance matrices are most often estimated by forming a multivariate analysis of variance and equating mean square matrices to their expectations. Such a procedure involves taking the difference between the between-group mean square and the within-group mean square matrices, and often produces an estimated between-group covariance matrix that is not nonnegative definite. We present estimators of the two covariance matrices that are always proper covariance matrices. The estimators are the restricted maximum likelihood estimators if the random effects are normally distributed. The estimation procedure is extended to more complicated models, including the twofold nested and the mixed-effect models. A numerical example is presented to illustrate the use of the estimation procedure.  相似文献   

5.
The paper considers joint maximum likelihood (ML) and semiparametric (SP) estimation of copula parameters in a bivariate t-copula. Analytical expressions for the asymptotic covariance matrix involving integrals over special functions are derived, which can be evaluated numerically. These direct evaluations of the Fisher information matrix are compared to Hessian evaluations based on numerical differentiation in a simulation study showing a satisfactory performance of the computationally less demanding Hessian evaluations. Individual asymptotic confidence intervals for the t-copula parameters and the corresponding tail dependence coefficient are derived. For two financial datasets these confidence intervals are calculated using both direct evaluation of the Fisher information and numerical evaluation of the Hessian matrix. These confidence intervals are compared to parametric and nonparametric BCA bootstrap intervals based on ML and SP estimation, respectively, showing a preference for asymptotic confidence intervals based on numerical Hessian evaluations.  相似文献   

6.
In this paper, a local influence approach is employed to assess adequacy of the growth curve model with an unstructured covariance, based on likelihood displacement. The Hessian matrix of the model is investigated in detail under an abstract perturbation scheme. For illustration, covariance-weighted perturbation is discussed and used to analyze two real-life biological data sets, which show that the criteria presented in this article are useful in practice.  相似文献   

7.
This paper compares the application of different versions of the simulated counterparts of the Wald test, the score test, and the likelihood ratio test in one- and multiperiod multinomial probit models. Monte Carlo experiments show that the use of the simple form of the simulated likelihood ratio test delivers relatively robust results regarding the testing of several multinomial probit model specifications. In contrast, the inclusion of the Hessian matrix of the simulated loglikelihood function into the simulated score test and (in the multiperiod multinomial probit model) particularly the inclusion of the quasi-maximum likelihood theory into the simulated likelihood ratio test leads to substantial computational problems. The combined application of the quasi-maximum likelihood theory with the simulated Wald test or the simulated score test is not systematically superior to the application of the other versions of these two simulated classical tests either. Neither an increase in the number of observations nor in the number of random draws in the incorporated Geweke-Hajivassiliou-Keane simulator systematically lead to more precise conformities between the frequencies of type I errors and the basic significance levels. An increase in the number of observations only decreases the frequencies of type II errors, particularly regarding the simulated classical testing of multiperiod multinomial probit model specifications.  相似文献   

8.
Summary.  We consider the problem of obtaining population-based inference in the presence of missing data and outliers in the context of estimating the prevalence of obesity and body mass index measures from the 'Healthy for life' study. Identifying multiple outliers in a multivariate setting is problematic because of problems such as masking, in which groups of outliers inflate the covariance matrix in a fashion that prevents their identification when included, and swamping, in which outliers skew covariances in a fashion that makes non-outlying observations appear to be outliers. We develop a latent class model that assumes that each observation belongs to one of K unobserved latent classes, with each latent class having a distinct covariance matrix. We consider the latent class covariance matrix with the largest determinant to form an 'outlier class'. By separating the covariance matrix for the outliers from the covariance matrices for the remainder of the data, we avoid the problems of masking and swamping. As did Ghosh-Dastidar and Schafer, we use a multiple-imputation approach, which allows us simultaneously to conduct inference after removing cases that appear to be outliers and to promulgate uncertainty in the outlier status through the model inference. We extend the work of Ghosh-Dastidar and Schafer by embedding the outlier class in a larger mixture model, consider penalized likelihood and posterior predictive distributions to assess model choice and model fit, and develop the model in a fashion to account for the complex sample design. We also consider the repeated sampling properties of the multiple imputation removal of outliers.  相似文献   

9.
The model chi-square that is used in linear structural equation modeling compares the fitted covariance matrix of a target model to an unstructured covariance matrix to assess global fit. For models with nonlinear terms, i.e., interaction or quadratic terms, this comparison is very problematic because these models are not nested within the saturated model that is represented by the unstructured covariance matrix. We propose a novel measure that quantifies the heteroscedasticity of residuals in structural equation models. It is based on a comparison of the likelihood for the residuals under the assumption of heteroscedasticity with the likelihood under the assumption of homoscedasticity. The measure is designed to respond to omitted nonlinear terms in the structural part of the model that result in heteroscedastic residual scores. In a small Monte Carlo study, we demonstrate that the measure appears to detect omitted nonlinear terms reliably when falsely a linear model is analyzed and the omitted nonlinear terms account for substantial nonlinear effects. The results also indicate that the measure did not respond when the correct model or an overparameterized model were used.  相似文献   

10.
Given observations on an m × n lattice, approximate maximum likelihood estimates are derived for a family of models including direct covariance, spatial moving average, conditional autoregressive and simultaneous autoregressive models. The approach involves expressing the (approximate) covariance matrix of the observed variables in terms of a linear combination of neighbour relationship matrices, raised to a power. The structure is such that the eigenvectors of the covariance matrix are independent of the parameters of interest. This result leads to a simple Fisher scoring type algorithm for estimating the parameters. The ideas are illustrated by fitting models to some remotely sensed data.  相似文献   

11.
Covariance matrices, or in general matrices of sums of squares and cross-products, are used as input in many multivariate analyses techniques. The eigenvalues of these matrices play an important role in the statistical analysis of data including estimation and hypotheses testing. It has been recognized that one or few observations can exert an undue influence on the eigenvalues of a covariance matrix. The relationship between the eigenvalues of the covariance matrix computed from all data and the eigenvalues of the perturbed covariance matrix (a covariance matrix computed after a small subset of the observations has been deleted) cannot in general be written in closed-form. Two methods for approximating the eigenvalues of a perturbed covariance matrix have been suggested by Hadi (1988) and Wang and Nyquist (1991) for the case of a perturbation by a single observation. In this paper we improve on these two methods and give some additional theoretical results that may give further insight into the problem. We also compare the two improved approximations in terms of their accuracies.  相似文献   

12.
Approximate normality and unbiasedness of the maximum likelihood estimate (MLE) of the long-memory parameter H of a fractional Brownian motion hold reasonably well for sample sizes as small as 20 if the mean and scale parameter are known. We show in a Monte Carlo study that if the latter two parameters are unknown the bias and variance of the MLE of H both increase substantially. We also show that the bias can be reduced by using a parametric bootstrap procedure. In very large samples, maximum likelihood estimation becomes problematic because of the large dimension of the covariance matrix that must be inverted. To overcome this difficulty, we propose a maximum likelihood method based upon first differences of the data. These first differences form a short-memory process. We split the data into a number of contiguous blocks consisting of a relatively small number of observations. Computation of the likelihood function in a block then presents no computational problem. We form a pseudo-likelihood function consisting of the product of the likelihood functions in each of the blocks and provide a formula for the standard error of the resulting estimator of H. This formula is shown in a Monte Carlo study to provide a good approximation to the true standard error. The computation time required to obtain the estimate and its standard error from large data sets is an order of magnitude less than that required to obtain the widely used Whittle estimator. Application of the methodology is illustrated on two data sets.  相似文献   

13.
Abstract.  The Extended Growth Curve model is considered. It turns out that the estimated mean of the model is the projection of the observations on the space generated by the design matrices which turns out to be the sum of two tensor product spaces. The orthogonal complement of this space is decomposed into four orthogonal spaces and residuals are defined by projecting the observation matrix on the resulting components. The residuals are interpreted and some remarks are given as to why we should not use ordinary residuals, what kind of information our residuals give and how this information might be used to validate model assumptions and detect outliers and influential observations. It is shown that the residuals are symmetrically distributed around zero and are uncorrelated with each other. The covariance between the residuals and the estimated model as well as the dispersion matrices for the residuals are also given.  相似文献   

14.
15.
Necessary and sufficient conditions are given for the covariance structure of all the observations in a multivariate factorial experiment under which certain multivariate quadratic forms are independent and distributed as a constant times a Wishart. It is also shown that exact multivariate test statistics can be formed for certain covariance structures of the observations when the assumption of equal covariance matrices for each normal population is relaxed. A characterization is given for the dependency structure between random vectors in which the sample mean and sample covariance matrix have certain properties.  相似文献   

16.
The maximum likelihood equations for a multivariate normal model with structured mean and structured covariance matrix may not have an explicit solution. In some cases the model's error term may be decomposed as the sum of two independent error terms, each having a patterned covariance matrix, such that if one of the unobservable error terms is artificially treated as "missing data", the EM algorithm can be used to compute the maximum likelihood estimates for the original problem. Some decompositions produce likelihood equations which do not have an explicit solution at each iteration of the EM algorithm, but within-iteration explicit solutions are shown for two general classes of models including covariance component models used for analysis of longitudinal data.  相似文献   

17.
We show that the likelihood ratio (LR) tests, for covariance hypotheses in multivariate normal models, take the form of a product of powers of independent beta variates whenever the covariance matrices generate a commutative quadratic subspace (CQS), See Seely (1971), under both the model and the hypothesis.  相似文献   

18.
Abstract

This article proposes a new approach to analyze multiple vector autoregressive (VAR) models that render us a newly constructed matrix autoregressive (MtAR) model based on a matrix-variate normal distribution with two covariance matrices. The MtAR is a generalization of VAR models where the two covariance matrices allow the extension of MtAR to a structural MtAR analysis. The proposed MtAR can also incorporate different lag orders across VAR systems that provide more flexibility to the model. The estimation results from a simulation study and an empirical study on macroeconomic application show favorable performance of our proposed models and method.  相似文献   

19.
In this paper we discuss the likelihood-based local influence in a growth curve model with Rao's simple covariance structure. Under an abstract perturbation, the Hessian matrix is provided in which the eigenvector corresponding to the maximum absolute eigenvalue is used to assess the influence of observations. Specifically, we employ covariance-weighted perturbation to demonstrate the use of the proposed approach. A practical example is analysed using the proposed local influence approach.  相似文献   

20.
ABSTRACT

We develop a new score-driven model for the joint dynamics of fat-tailed realized covariance matrix observations and daily returns. The score dynamics for the unobserved true covariance matrix are robust to outliers and incidental large observations in both types of data by assuming a matrix-F distribution for the realized covariance measures and a multivariate Student's t distribution for the daily returns. The filter for the unknown covariance matrix has a computationally efficient matrix formulation, which proves beneficial for estimation and simulation purposes. We formulate parameter restrictions for stationarity and positive definiteness. Our simulation study shows that the new model is able to deal with high-dimensional settings (50 or more) and captures unobserved volatility dynamics even if the model is misspecified. We provide an empirical application to daily equity returns and realized covariance matrices up to 30 dimensions. The model statistically and economically outperforms competing multivariate volatility models out-of-sample. Supplementary materials for this article are available online.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号