首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Power-divergence goodness-of-fit statistics have asymptotically a chi-squared distribution. Asymptotic results may not apply in small-sample situations, and the exact significance of a goodness-of-fit statistic may potentially be over- or under-stated by the asymptotic distribution. Several correction terms have been proposed to improve the accuracy of the asymptotic distribution, but their performance has only been studied for the equiprobable case. We extend that research to skewed hypotheses. Results are presented for one-way multinomials involving k = 2 to 6 cells with sample sizes N = 20, 40, 60, 80 and 100 and nominal test sizes f = 0.1, 0.05, 0.01 and 0.001. Six power-divergence goodness-of-fit statistics were investigated, and five correction terms were included in the study. Our results show that skewness itself does not affect the accuracy of the asymptotic approximation, which depends only on the magnitude of the smallest expected frequency (whether this comes from a small sample with the equiprobable hypothesis or a large sample with a skewed hypothesis). Throughout the conditions of the study, the accuracy of the asymptotic distribution seems to be optimal for Pearson's X2 statistic (the power-divergence statistic of index u = 1) when k > 3 and the smallest expected frequency is as low as between 0.1 and 1.5 (depending on the particular k, N and nominal test size), but a computationally inexpensive improvement can be obtained in these cases by using a moment-corrected h2 distribution. If the smallest expected frequency is even smaller, a normal correction yields accurate tests through the log-likelihood-ratio statistic G2 (the power-divergence statistic of index u = 0).  相似文献   

2.
Generally, confidence regions for the probabilities of a multinomial population are constructed based on the Pearson χ2 statistic. Morales et al. (Bootstrap confidence regions in multinomial sampling. Appl Math Comput. 2004;155:295–315) considered the bootstrap and asymptotic confidence regions based on a broader family of test statistics known as power-divergence test statistics. In this study, we extend their work and propose penalized power-divergence test statistics-based confidence regions. We only consider small sample sizes where asymptotic properties fail and alternative methods are needed. Both bootstrap and asymptotic confidence regions are constructed. We consider the percentile and the bias corrected and accelerated bootstrap confidence regions. The latter confidence region has not been studied previously for the power-divergence statistics much less for the penalized ones. Designed simulation studies are carried out to calculate average coverage probabilities. Mean absolute deviation between actual and nominal coverage probabilities is used to compare the proposed confidence regions.  相似文献   

3.
The exact and asymptotic upper tail probabilities ( α= .l0, .05, .01, .001) of the three chi-squared goodness-of-fit statistics Pearson's X 2, likelihood ratioG 2, and power-divergence statisticD 2 (λ ) , with λ = 2/3, are compared numerically for simple null hypotheses not involving parameter estimation. Three types of such hypotheses were investigated (equal cell probabilities, proportional cell probabilities, some fixed small expectations together with some increasing large expectations) for the number of cells being between 3 and 15, and for sample sizes from 10 to 40, increasing by steps of one. Rating the relative accuracy of the chi-squared approximation in terms of ±10% and ±20% intervals around α led to the following conclusions: 1. Using G 2 is not recommended. 2 . At the more relevant significance levels α = .10 and α = .05X 2 should be preferred over D 2. Solely in case of unequal cell probabilitiesD 2 is the better choice at α = .O1 and α = .001. 3 . Yarnold's (1970; Journal of the Amerin Statistical Association, 65, 864-886) rule for the minimum expectation when using X 2 ("If the number of cells k is 3 or more, and if r denotes the number of expectations less than 5, then the minimum expectation may be as small as 5r/k.") generalizes to D 2; it gives a good lower limit for the expected cell frequencies, however, when the number of cells is greater than 3. For k = 3 , even sample sizes over 15 may be insufficient.  相似文献   

4.
The exact and asymptotic upper tail probabilities (α = .10, .05, .01, .001) of the three chi-squared goodness-of-fit statistics Pearson's X 2, likelihood ratioG 2, and powerdivergence statisticD 2(λ), with λ= 2/3 are compared by complete enumeration for the binomial and the mixture binomial. For the two-component mixture binomial, three cases have been distinguished. 1. Both success probabilities and the mixing weights are unknwon. 2. One of the two success probabilities is known. And 3., the mixing weights are known. The binomial was investigated for the number of cellsk, being between 3 and 6 with sample sizes between 5 and 100, for k = 7 with sample sizes between 5 and 45, and for k = 10 with sample sizes ranging from 5 to 20. For the mixture binomial, solely k = 5 cells were considered with sample sizes from 5 to 100 and k = 8 cells with sample sizes between 4 and 20. Rating the relative accuracy of the chi-squared approximation in terms of ±10% and ±20% intervals around α led to the following conclusions for the binomial: 1. Using G2 is not recommendable. 2. At the significance levels α=.10 and α=.05X 2 should be preferred over D 2; D 2 is the best choice at α = .01. 3. Cochran's (1954; Biometrics, 10, 417-451) rule for the minimum expectation when using X 2 seems to generalize to the binomial for G 2 and D 2 ; as a compromise, it gives a rather strong lower limit for the expected cell frequencies in some circumstances, but a rather liberal in others. To draw similar conclusions concerning the mixture binomial was not possible, because in that case, the accuracy of the chi-squared approximation is not only a function of the chosen test statistic and of the significance level, but also heavily depends on the numerical value of theinvolved unknown parameters and on the hypothesis to be tested. Thereto, the present study may give rise only to warnings against the application of mixture models to small samples.  相似文献   

5.
Shiue and Bain proposed an approximate F statistic for testing equality of two gamma distribution scale parameters in presence of a common and unknown shape parameter. By generalizing Shiue and Bain's statistic we develop a new statistic for testing equality of L >= 2 gamma distribution scale parameters. We derive the distribution of the new statistic ESP for L = 2 and equal sample size situation. For other situations distribution of ESP is not known and test based on the ESP statistic has to be performed by using simulated critical values. We also derive a C(α) statistic CML and develop a likelihood ratio statistic, LR, two modified likelihood ratio statistics M and MLB and a quadratic statistic Q. The distribution of each of the statistics CML, LR, M, MLB and Q is asymptotically chi-square with L - 1 degrees of freedom. We then conducted a monte-carlo simulation study to compare the perfor- mance of the statistics ESP, LR, M, MLB, CML and Q in terms of size and power. The statistics LR, M, MLB and Q are in general liberal and do not show power advantage over other statistics. The statistic CML, based on its asymptotic chi-square distribution, in general, holds nominal level well. It is most powerful or nearly most powerful in most situations and is simple to use. Hence, we recommend the statistic CML for use in general. For better power the statistic ESP, based on its empirical distribution, is recommended for the special situation for which there is evidence in the data that λ1 < … < λL and n1 < … < nL, where λ1 …, λL are the scale parameters and n1,…, nL are the sample sizes.  相似文献   

6.
What is the interpretation of a confidence interval following estimation of a Box-Cox transformation parameter λ? Several authors have argued that confidence intervals for linear model parameters ψ can be constructed as if λ. were known in advance, rather than estimated, provided the estimand is interpreted conditionally given $\hat \lambda$. If the estimand is defined as $\psi \left( {\hat \lambda } \right)$, a function of the estimated transformation, can the nominal confidence level be regarded as a conditional coverage probability given $\hat \lambda$, where the interval is random and the estimand is fixed? Or should it be regarded as an unconditional probability, where both the interval and the estimand are random? This article investigates these questions via large-n approximations, small- σ approximations, and simulations. It is shown that, when model assumptions are satisfied and n is large, the nominal confidence level closely approximates the conditional coverage probability. When n is small, this conditional approximation is still good for regression models with small error variance. The conditional approximation can be poor for regression models with moderate error variance and single-factor ANOVA models with small to moderate error variance. In these situations the nominal confidence level still provides a good approximation for the unconditional coverage probability. This suggests that, while the estimand may be interpreted conditionally, the confidence level should sometimes be interpreted unconditionally.  相似文献   

7.
Investigators and epidemiologists often use statistics based on the parameters of a multinomial distribution. Two main approaches have been developed to assess the inferences of these statistics. The first one uses asymptotic formulae which are valid for large sample sizes. The second one computes the exact distribution, which performs quite well for small samples. They present some limitations for sample sizes N neither large enough to satisfy the assumption of asymptotic normality nor small enough to allow us to generate the exact distribution. We analytically computed the 1/N corrections of the asymptotic distribution for any statistics based on a multinomial law. We applied these results to the kappa statistic in 2×2 and 3×3 tables. We also compared the coverage probability obtained with the asymptotic and the corrected distributions under various hypothetical configurations of sample size and theoretical proportions. With this method, the estimate of the mean and the variance were highly improved as well as the 2.5 and the 97.5 percentiles of the distribution, allowing us to go down to sample sizes around 20, for data sets not too asymmetrical. The order of the difference between the exact and the corrected values was 1/N2 for the mean and 1/N3 for the variance.  相似文献   

8.
The asymptotic distribution of the likelihood ratio under noncontiguous alternatives is shown to be normal for the exponential family of distributions. The rate of convergence of the parameters to the hypothetical value is specified where the asymptotic noncentral chi-square distribution no longer holds. It is only a little slower than $\O\left( {n^{ - \frac{1}{2}} } \right)$. The result provides compact power approximation formulae and is shown to work reasonably well even for moderate sample sizes.  相似文献   

9.
In this work we have determined the asymptotic distribution of the maximum likelihood estimators of the parameters β, λ, and δ for the right-truncated Dagum model. Some numerical comparisons show that, for each combination of the parameters and for each sample size, the variance of maximum likelihood estimators increases as the truncation point decreases, i.e., with the increase in the cut of the right tail of distribution.  相似文献   

10.
Moment estimators for parameters in a truncated bivariate Poisson distribution are derived in Hamdan (1972) for the special case of λ1 = λ2, Where λ1, λ2 are the marginal means. Here we derive the maximum likelihood estimators for this special case. The information matrix is also obtained which provides asymptotic covariance matrix of the maximum likelihood estimators. The asymptotic covariance matrix of moment estimators is also derived. The asymptotic efficiency of moment estimators is computed and found to be very low.  相似文献   

11.
In this paper, we introduce a new risk measure, the so‐called conditional tail moment. It is defined as the moment of order a ≥ 0 of the loss distribution above the upper α‐quantile where α ∈ (0,1). Estimating the conditional tail moment permits us to estimate all risk measures based on conditional moments such as conditional tail expectation, conditional value at risk or conditional tail variance. Here, we focus on the estimation of these risk measures in case of extreme losses (where α ↓0 is no longer fixed). It is moreover assumed that the loss distribution is heavy tailed and depends on a covariate. The estimation method thus combines non‐parametric kernel methods with extreme‐value statistics. The asymptotic distribution of the estimators is established, and their finite‐sample behaviour is illustrated both on simulated data and on a real data set of daily rainfalls.  相似文献   

12.
The standard error of the maximum-likelihood estimator for 1/μ based on a random sample of size N from the normal distribution N(μ,σ2) is infinite. This could be considered to be a disadvantage.Another disadvantage is that the bias of the estimator is undefined if the integral is interpreted in the usual sense as a Lebesgue integral. It is shown here that the integral expression for the bias can be interpreted in the sense given by the Schwartz theory of generalized functions. Furthermore, an explicit closed form expression in terms of the complex error function is derived. It is also proven that unbiased estimation of 1/μ is impossible.Further results on the maximum-likelihood estimator are investigated, including closed form expressions for the generalized moments and corresponding complete asymptotic expansions. It is observed that the problem can be reduced to a one-parameter problem depending only on , and this holds also for more general location-scale problems. The parameter can be interpreted as a shape parameter for the distribution of the maximum-likelihood estimator.An alternative estimator is suggested motivated by the asymptotic expansion for the bias, and it is argued that the suggested estimator is an improvement. The method used for the construction of the estimator is simple and generalizes to other parametric families.The problem leads to a rediscovery of a generalized mathematical expectation introduced originally by Kolmogorov [1933. Foundations of the Theory of Probability, second ed. Chelsea Publishing Company (1956)]. A brief discussion of this, and some related integrals, is provided. It is in particular argued that the principal value expectation provides a reasonable location parameter in cases where it exists. This does not hold generally for expectations interpreted in the sense given by the Schwartz theory of generalized functions.  相似文献   

13.
ABSTRACT

In this article, we consider a two-phase tandem queueing model with a second optional service and random feedback. The first phase of service is essential for all customers and after the completion of the first phase of service, any customer receives the second phase of service with probability α, feedback to the tail of the first queue with probability β if the service is not successful and leaves the system with probability 1 ? α ? β. In this model, our main purpose is to estimate the parameters of the model, traffic intensity, and mean system size, in the steady state, via maximum likelihood and Bayesian methods. Furthermore, we find asymptotic confidence intervals for mean system size. Finally, by a simulation study, we compute the confidence levels and mean length for asymptotic confidence intervals of mean system size with a nominal level 0.95.  相似文献   

14.
Power studies of tests of equality of covariance matrices of two p-variate complex normal populations σ1 = σ2 against two-sided alternatives have been made based on the following five criteria: (1) Roy's largest root, (2) Hotelling's trace, (4) Wilks' criterion and (5) Roy's largest and smallest roots. Some theorems on transformations and Jacobians in the two-sample complex Gaussian case have been proved in order to obtain a general theorem for establishing the local unbiasedness conditions connecting the two critical values for tests (1)–(5). Extensive unbiased power tabulations have been made for p=2, for various values of n1, n2, λ1 and λ2 where n1 is the df of the SP matrix from the ith sample and λ1 is the ith latent root of σ1σ-12 (i=1, 2). Equal tail areas approach has also been used further to compute powers of tests (1)–(4) for p=2 for studying the bias and facilitating comparisons with powers in the unbiased case. The inferences have been found similar to those in the real case. (Chu and Pillai, Ann. Inst. Statist. Math. 31.  相似文献   

15.
We study the r-content Δ of the r -simplex generated by r+ 1 independent random points in R”. Each random point Zj is isotropic and distributed according to λ||Zj||2 ~ beta-type-2(n/2, v), λ, v > 0. We provide an asymptotic normality result which is analogous to the conjecture made by Miles (1971). A method is introduced to work out the exact density of W = (rλ)r(r!Δ)2/(r + |)r+l and hence that of Δ. The distribution of W is also related to some hypothesis-testing problems in multivariate analysis. Furthermore, by using this method, the distribution of W or Δ can easily be simulated.  相似文献   

16.
For the linear hypothesis in a strucural equation model, the properties of test statistics based on the two stage least squares estimator (2SLSE) have been examined since these test statistics are easily derived in the instrumental variable estimation framework. Savin (1976) has shown that inequalities exist among the test statistics for the linear hypothesis, but it is well known that there is no systematic inequality among these statistics based on 2SLSE for the linear hypothesis in a structural equation model. Morimune and Oya (1994) derived the constrained limited information maximum likelihood estimator (LIMLE) subject to general linear constraints on the coefficients of the structural equation, as well as Wald, LM and Lr Test statistics for the adequacy of the linear constraints.

In this paper, we derive the inequalities among these three test statistics based on LIMLE and the local power functions based on Limle and 2SLSE to show that there is no test statistic which is uniformly most powerful, and the LR test statistic based on LIMLE is locally unbised and the other test statistics are not. Monte Carlo simulations are used to examine the actual sizes of these test statistics and some numerical examples of the power differences among these test statistics are given. It is found that the actual sizes of these test statistics are greater than the nominal sizes, the differences between the actual and nominal sizes of Wald test statistics are generally the greatest, those of LM test statistics are the smallest, and the power functions depend on the correlations between the endogenous explanatory variables and the error term of the structural equation, the asymptotic variance of estimator of coefficients of the structural equation and the number of restrictions imposed on the coefficients.  相似文献   

17.
18.
Four general classes of partially balanced designs for 2n factorials, corresponding to four different forms of a general null hypothesis H on factorial effects, are presented. For the typical design in each class, the simplified form of the non-centrality parameter λ2 of the asymptotic chi-square distribution of the likelihood ratio statistic for testing the corresponding form of H0 is derived under defined local alternatives. Optimal designs d1 maximizing λ2 in the i-th class and minimizing the trace, determinant and largest eigenvalue of a defined covariance matrix, i =1,…,4, are determined.  相似文献   

19.
An empirical distribution function estimator for the difference of order statistics from two independent populations can be used for inference between quantiles from these populations. The inferential properties of the approach are evaluated in a simulation study where different sample sizes, theoretical distributions, and quantiles are studied. Small to moderate sample sizes, tail quantiles, and quantiles which do not coincide with the expectation of an order statistic are identified as problematic for appropriate Type I error control.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号