共查询到20条相似文献,搜索用时 14 毫秒
1.
A. R. Baghestani 《Journal of applied statistics》2019,46(13):2409-2417
ABSTRACTIn survival analysis, individuals may fail due to multiple causes of failure called competing risks setting. Parametric models such as Weibull model are not improper that ignore the assumption of multiple failure times. In this study, a novel extension of Weibull distribution is proposed which is improper and then can incorporate to the competing risks framework. This model includes the original Weibull model before a pre-specified time point and an exponential form for the tail of the time axis. A Bayesian approach is used for parameter estimation. A simulation study is performed to evaluate the proposed model. The conducted simulation study showed identifiability and appropriate convergence of the proposed model. The proposed model and the 3-parameter Gompertz model, another improper parametric distribution, are fitted to the acute lymphoblastic leukemia dataset. 相似文献
2.
Estimation from current-status data in continuous time 总被引:2,自引:0,他引:2
Niels Keiding Kamilla Begtrup Thomas H. Scheike Günther Hasibeder 《Lifetime data analysis》1996,2(2):119-129
The nonparametric maximum likelihood estimator for current-status data has been known for at least 40 years, but only recently have the mathematical-statistical properties been clarified. This note provides a case study in the important and often studied context of estimating age-specific immunization intensities from a seroprevalence survey. Fully parametric and spline-based alternatives (also based on continuous-time models) are given. The basic reproduction number R
0 exemplifies estimation of a functional. The limitations implied by the necessarily rather restrictive epidemiological assumptions are briefly discussed. 相似文献
3.
Edwin M.M. Ortega Gauss M. Cordeiro Elizabeth M. Hashimoto Kahadawala Cooray 《Journal of applied statistics》2014,41(9):1859-1880
We introduce the log-odd Weibull regression model based on the odd Weibull distribution (Cooray, 2006). We derive some mathematical properties of the log-transformed distribution. The new regression model represents a parametric family of models that includes as sub-models some widely known regression models that can be applied to censored survival data. We employ a frequentist analysis and a parametric bootstrap for the parameters of the proposed model. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and present some ways to assess global influence. Further, for different parameter settings, sample sizes and censoring percentages, some simulations are performed. In addition, the empirical distribution of some modified residuals are given and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be extended to a modified deviance residual in the proposed regression model applied to censored data. We define martingale and deviance residuals to check the model assumptions. The extended regression model is very useful for the analysis of real data. 相似文献
4.
We discuss the optimal allocation problem in a multi-level stress test with Type-II censoring and Weibull (extreme value) regression model. We derive the maximum-likelihood estimators and their asymptotic variance–covariance matrix through the Fisher information. Four optimality criteria are used to discuss the optimal allocation problem. Optimal allocation of units, both exactly for small sample sizes and asymptotically for large sample sizes, for two- and four-stress-level situations are determined numerically. Conclusions and discussions are provided based on the numerical studies. 相似文献
5.
Models are considered in which true lifetimes are generated by a Weibull regression model and measured lifetimes are determined from the true times by certain measurement error models. Adjusted estimators are obtained under one parametric specification. The bias properties of these estimators and standard estimators are compared both theoretically, using small measurement error asymptotics, and by simulation. The standard estimators of regression coefficients, other than the intercept, are bias-robust. The adjusted estimator of the shape parameter removes the bias of the standard estimator. 相似文献
6.
In this paper, we compare three residuals to assess departures from the error assumptions as well as to detect outlying observations in log-Burr XII regression models with censored observations. These residuals can also be used for the log-logistic regression model, which is a special case of the log-Burr XII regression model. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and the empirical distribution of each residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended to the modified martingale-type residual in log-Burr XII regression models with censored data. 相似文献
7.
《Journal of Statistical Computation and Simulation》2012,82(7):1387-1411
A five-parameter extension of the Weibull distribution capable of modelling a bathtub-shaped hazard rate function is introduced and studied. The beauty and importance of the new distribution lies in its ability to model both monotone and non-monotone failure rates that are quite common in lifetime problems and reliability. The proposed distribution has a number of well-known lifetime distributions as special sub-models, such as the Weibull, extreme value, exponentiated Weibull, generalized Rayleigh and modified Weibull (MW) distributions, among others. We obtain quantile and generating functions, mean deviations, Bonferroni and Lorenz curves and reliability. We provide explicit expressions for the density function of the order statistics and their moments. For the first time, we define the log-Kumaraswamy MW regression model to analyse censored data. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is determined. Two applications illustrate the potentiality of the proposed distribution. 相似文献
8.
In this paper we outline a class of fully parametric proportional hazards models, in which the baseline hazard is assumed to be a power transform of the time scale, corresponding to assuming that survival times follow a Weibull distribution. Such a class of models allows for the possibility of time varying hazard rates, but assumes a constant hazard ratio. We outline how Bayesian inference proceeds for such a class of models using asymptotic approximations which require only the ability to maximize the joint log posterior density. We apply these models to a clinical trial to assess the efficacy of neutron therapy compared to conventional treatment for patients with tumors of the pelvic region. In this trial there was prior information about the log hazard ratio both in terms of elicited clinical beliefs and the results of previous studies. Finally, we consider a number of extensions to this class of models, in particular the use of alternative baseline functions, and the extension to multi-state data. 相似文献
9.
Andrea A. Prudente 《统计学通讯:理论与方法》2013,42(20):3739-3755
For the first time, a new class of generalized Weibull linear models is introduced to be competitive to the well-known generalized (gamma and inverse Gaussian) linear models which are adequate for the analysis of positive continuous data. The proposed models have a constant coefficient of variation for all observations similar to the gamma models and may be suitable for a wide range of practical applications in various fields such as biology, medicine, engineering, and economics, among others. We derive a joint iterative algorithm for estimating the mean and dispersion parameters. We obtain closed form expressions in matrix notation for the second-order biases of the maximum likelihood estimates of the model parameters and define bias corrected estimates. The corrected estimates are easily obtained as vectors of regression coefficients in suitable weighted linear regressions. The practical use of the new class of models is illustrated in one application to a lung cancer data set. 相似文献
10.
《Journal of Statistical Computation and Simulation》2012,82(3):343-356
In this article, the proportional hazard model with Weibull frailty, which is outside the range of the exponential family, is used for analysing the right-censored longitudinal survival data. Complex multidimensional integrals are avoided by using hierarchical likelihood to estimate the regression parameters and to predict the realizations of random effects. The adjusted profile hierarchical likelihood is adopted to estimate the parameters in frailty distribution, during which the first- and second-order methods are used. The simulation studies indicate that the regression-parameter estimates in the Weibull frailty model are accurate, which is similar to the gamma frailty and lognormal frailty models. Two published data sets are used for illustration. 相似文献
11.
An important goal of research involving gene expression data for outcome prediction is to establish the ability of genomic data to define clinically relevant risk factors. Recent studies have demonstrated that microarray data can successfully cluster patients into low- and high-risk categories. However, the need exists for models which examine how genomic predictors interact with existing clinical factors and provide personalized outcome predictions. We have developed clinico-genomic tree models for survival outcomes which use recursive partitioning to subdivide the current data set into homogeneous subgroups of patients, each with a specific Weibull survival distribution. These trees can provide personalized predictive distributions of the probability of survival for individuals of interest. Our strategy is to fit multiple models; within each model we adopt a prior on the Weibull scale parameter and update this prior via Empirical Bayes whenever the sample is split at a given node. The decision to split is based on a Bayes factor criterion. The resulting trees are weighted according to their relative likelihood values and predictions are made by averaging over models. In a pilot study of survival in advanced stage ovarian cancer we demonstrate that clinical and genomic data are complementary sources of information relevant to survival, and we use the exploratory nature of the trees to identify potential genomic biomarkers worthy of further study. 相似文献
12.
The p -variate Burr distribution has been derived, developed, discussed and deployed by various authors. In this paper a score statistic for testing independence of the components, equivalent to testing for p independent Weibull against a p -variate Burr alternative, is obtained. Its null and non-null properties are investigated with and without nuisance parameters and including the possibility of censoring. Two applications to real data are described. The test is also discussed in the context of other Weibull mixture models. 相似文献
13.
Robert Miltenberger Heiko Götte Armin Schüler Antje Jahn-Eimermacher 《Pharmaceutical statistics》2021,20(4):864-878
Progression-free survival (PFS) is a frequently used endpoint in oncological clinical studies. In case of PFS, potential events are progression and death. Progressions are usually observed delayed as they can be diagnosed not before the next study visit. For this reason potential bias of treatment effect estimates for progression-free survival is a concern. In randomized trials and for relative treatment effects measures like hazard ratios, bias-correcting methods are not necessarily required or have been proposed before. However, less is known on cross-trial comparisons of absolute outcome measures like median survival times. This paper proposes a new method for correcting the assessment time bias of progression-free survival estimates to allow a fair cross-trial comparison of median PFS. Using median PFS for example, the presented method approximates the unknown posterior distribution by a Bayesian approach based on simulations. It is shown that the proposed method leads to a substantial reduction of bias as compared to estimates derived from maximum likelihood or Kaplan–Meier estimates. Bias could be reduced by more than 90% over a broad range of considered situations differing in assessment times and underlying distributions. By coverage probabilities of at least 94% based on the credibility interval of the posterior distribution the resulting parameters hold common confidence levels. In summary, the proposed approach is shown to be useful for a cross-trial comparison of median PFS. 相似文献
14.
In regression analysis, a sample selection scheme often applies to the response variable, which results in missing not at random observations on the variable. In this case, a regression analysis using only the selected cases would lead to biased results. This paper proposes a Bayesian methodology to correct this bias based on a semiparametric Bernstein polynomial regression model that incorporates the sample selection scheme into a stochastic monotone trend constraint, variable selection, and robustness against departures from the normality assumption. We present the basic theoretical properties of the proposed model that include its stochastic representation, sample selection bias quantification, and hierarchical model specification to deal with the stochastic monotone trend constraint in the nonparametric component, simple bias corrected estimation, and variable selection for the linear components. We then develop computationally feasible Markov chain Monte Carlo methods for semiparametric Bernstein polynomial functions with stochastically constrained parameter estimation and variable selection procedures. We demonstrate the finite-sample performance of the proposed model compared to existing methods using simulation studies and illustrate its use based on two real data applications. 相似文献
15.
Gauss M. Cordeiro Edwin M.M. Ortega 《Journal of Statistical Computation and Simulation》2013,83(6):1082-1114
In this paper, we study some mathematical properties of the beta Weibull (BW) distribution, which is a quite flexible model in analysing positive data. It contains the Weibull, exponentiated exponential, exponentiated Weibull and beta exponential distributions as special sub-models. We demonstrate that the BW density can be expressed as a mixture of Weibull densities. We provide their moments and two closed-form expressions for their moment-generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, reliability and two entropies. The density of the BW-order statistics is a mixture of Weibull densities and two closed-form expressions are derived for their moments. The estimation of the parameters is approached by two methods: moments and maximum likelihood. We compare the performances of the estimates obtained from both the methods by simulation. The expected information matrix is derived. For the first time, we introduce a log-BW regression model to analyse censored data. The usefulness of the BW distribution is illustrated in the analysis of three real data sets. 相似文献
16.
《Journal of Statistical Computation and Simulation》2012,82(10):1211-1232
We study in detail the so-called beta-modified Weibull distribution, motivated by the wide use of the Weibull distribution in practice, and also for the fact that the generalization provides a continuous crossover towards cases with different shapes. The new distribution is important since it contains as special sub-models some widely-known distributions, such as the generalized modified Weibull, beta Weibull, exponentiated Weibull, beta exponential, modified Weibull and Weibull distributions, among several others. It also provides more flexibility to analyse complex real data. Various mathematical properties of this distribution are derived, including its moments and moment generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are also derived for the chf, mean deviations, Bonferroni and Lorenz curves, reliability and entropies. The estimation of parameters is approached by two methods: moments and maximum likelihood. We compare by simulation the performances of the estimates from these methods. We obtain the expected information matrix. Two applications are presented to illustrate the proposed distribution. 相似文献
17.
In this paper we deal with a Bayesian analysis for right-censored survival data suitable for populations with a cure rate. We consider a cure rate model based on the negative binomial distribution, encompassing as a special case the promotion time cure model. Bayesian analysis is based on Markov chain Monte Carlo (MCMC) methods. We also present some discussion on model selection and an illustration with a real data set. 相似文献
18.
A general procedure is developed for bias-correcting the maximum likelihood estimators (MLEs) of the parameters of Weibull regression model with either complete or right-censored data. Following the bias correction, variance corrections and hence improved t-ratios for model parameters are presented. Potentially improved t-ratios for other reliability-related quantities are also discussed. Simulation results show that the proposed method is effective in correcting the bias of the MLEs, and the resulted t-ratios generally improve over the regular t-ratios. 相似文献
19.
AbstractThis paper considers the statistical analysis of masked data in a parallel system with inverse Weibull distributed components under type II censoring. Based on Gamma conjugate prior, the Bayesian estimation as well as the hierarchical Bayesian estimation for the parameters and the reliability function of system are obtained by using the Bayesian theory and the hierarchical Bayesian method. Finally, Monte Carlo simulations are provided to compare the performances of the estimates under different masking probabilities and effective sample sizes. 相似文献
20.
In this paper, we focus on stochastic comparisons of extreme order statistics from heterogeneous independent/interdependent Weibull samples. Specifically, we study extreme order statistics from Weibull distributions with (i) common shape parameter but different scale parameters, and (ii) common scale parameter but different shape parameters. Several new comparison results in terms of the likelihood ratio order, reversed hazard rate order and usual stochastic order are studied in those scenarios. The results established here strengthen and generalize some of the results known in the literature including Khaledi and Kochar [Weibull distribution: some stochastic comparisons. J Statist Plann Inference. 2006;136:3121–3129], Fang and Zhang [Stochastic comparisons of series systems with heterogeneous Weibull components. Statist Probab Lett. 2013;83:1649–1653], Torrado [Comparisons of smallest order statistics from Weibull distributions with different scale and shape parameters. J Korean Statist Soc. 2015;44:68–76] and Torrado and Kochar [Stochastic order relations among parallel systems from Weibull distributions. J Appl Probab. 2015;52:102–116]. Some numerical examples are also provided for illustration. 相似文献