首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
We consider the first-order Poisson autoregressive model proposed by McKenzie [Some simple models for discrete variate time series. Water Resour Bull. 1985;21:645–650] and Al-Osh and Alzaid [First-order integer valued autoregressive (INAR(1)) process. J Time Ser Anal. 1987;8:261–275], which may be suitable in situations where the time series data are non-negative and integer valued. We derive the second-order bias of the squared difference estimator [Weiß. Process capability analysis for serially dependent processes of Poisson counts. J Stat Comput Simul. 2012;82:383–404] for one of the parameters and show that this bias can be used to define a bias-reduced estimator. The behaviour of a modified conditional least-squares estimator is also studied. Furthermore, we access the asymptotic properties of the estimators here discussed. We present numerical evidence, based upon Monte Carlo simulation studies, showing that the here proposed bias-adjusted estimator outperforms the other estimators in small samples. We also present an application to a real data set.  相似文献   

2.
Real count data time series often show the phenomenon of the underdispersion and overdispersion. In this paper, we develop two extensions of the first-order integer-valued autoregressive process with Poisson innovations, based on binomial thinning, for modeling integer-valued time series with equidispersion, underdispersion, and overdispersion. The main properties of the models are derived. The methods of conditional maximum likelihood, Yule–Walker, and conditional least squares are used for estimating the parameters, and their asymptotic properties are established. We also use a test based on our processes for checking if the count time series considered is overdispersed or underdispersed. The proposed models are fitted to time series of the weekly number of syphilis cases and monthly counts of family violence illustrating its capabilities in challenging the overdispersed and underdispersed count data.  相似文献   

3.
The innovations of an INAR(1) process (integer-valued autoregressive) are usually assumed to be unobservable. There are, however, situations in practice, where also the innovations can be uncovered, i.e. where we are concerned with a fully observed INAR(1) process. We analyze stochastic properties of such a fully observed INAR(1) process and explore the relation between the INAR(1) model and certain metapopulation models. We show how the additional knowledge about the innovations can be used for parameter estimation, for model diagnostics, and for forecasting. Our findings are illustrated with two real-data examples.  相似文献   

4.
The INAR(1) model (integer-valued autoregressive) is commonly used to model serially dependent processes of Poisson counts. We propose several asymptotic simultaneous confidence regions for the two parameters of a Poisson INAR(1) model, and investigate their performance and robustness for finite-length time series in a simulation study. Practical recommendations are derived, and the application of the confidence regions is illustrated by a real-data example.  相似文献   

5.
Processes of serially dependent Poisson counts are commonly observed in real-world applications and can often be modeled by the first-order integer-valued autoregressive (INAR) model. For detecting positive shifts in the mean of a Poisson INAR(1) process, we propose the one-sided s exponentially weighted moving average (EWMA) control chart, which is based on a new type of rounding operation. The s-EWMA chart allows computing average run length (ARLs) exactly and efficiently with a Markov chain approach. Using an implementation of this procedure for ARL computation, the s-EWMA chart is easily designed, which is demonstrated with a real-data example. Based on an extensive study of ARLs, the out-of-control performance of the chart is analyzed and compared with that of a c chart and a one-sided cumulative sum (CUSUM) chart. We also investigate the robustness of the chart against departures from the assumed Poisson marginal distribution.  相似文献   

6.
Abstract

In this paper, we introduce a surplus process involving a compound Poisson counting process, which is a generalization of the classical ruin model where the claim-counting process is a homogeneous Poisson process. The incentive is to model batch arrival of claims using a counting process that is based on a compound distribution. This reduces the difficulty of modeling claim amounts and is consistent with industrial data. Recursive formula, some properties and relevant main ruin theory results are provided. Further, we consider applications involving zero-truncated negative binomial and zero-truncated binomial batch arrivals when the claim amounts follow exponential or Erlang distribution.  相似文献   

7.
In this paper, we introduce a new non-negative integer-valued autoregressive time series model based on a new thinning operator, so called generalized zero-modified geometric (GZMG) thinning operator. The first part of the paper is devoted to the distribution, GZMG distribution, which is obtained as the convolution of the zero-modified geometric (ZMG) distributed random variables. Some properties of this distribution are derived. Then, we construct a thinning operator based on the counting processes with ZMG distribution. Finally, an INAR(1) time series model is introduced and its properties including estimation issues are derived and discussed. A small Monte Carlo experiment is conducted to evaluate the performance of maximum likelihood estimators in finite samples. At the end of the paper, we consider an empirical illustration of the introduced INAR(1) model.  相似文献   

8.
Cossette et al. (2010 Cossette, H., Marceau, E., Maume-Deschamps, V. (2010). Discerte-time risk models based on time series for count random variables. ASTIN Bull. 40:123150.[Crossref], [Web of Science ®] [Google Scholar], 2011 Cossette, H., Marceau, E., Toureille, F. (2011). risk models based on time series for count random variables. Insur. Math. Econ. 48:1928.[Crossref], [Web of Science ®] [Google Scholar]) gave a novel collective risk model where the total numbers of claims satisfy the first-order integer-valued autoregressive process. For a risk model, it is interesting to investigate the upper bound of ruin probability. However, the loss increments of the above model are dependent; it is difficult to derive the upper bound of ruin probability. In this article, we propose an approximation model with stationary independent increments. The upper bound of ruin probability and the adjustment coefficient are derived. The approximation model is illustrated via four simulated examples. Results show that the gap of the approximation model and dependent model can be ignored by adjusting values of parameters.  相似文献   

9.
In this paper, we develop a zero-inflated NGINAR(1) process as an alternative to the NGINAR(1) process (Risti?, Nasti?, and Bakouch 2009 Risti?, M. M., A. S. Nasti?, and H. S. Bakouch. 2009. A new geometric first-order integer-valued autoregressive (NGINAR(1)) process. Journal of Statistical Planning and Inference 139:221826.[Crossref], [Web of Science ®] [Google Scholar]) when the number of zeros in the data is larger than the expected number of zeros by the geometric process. The proposed process has zero-inflated geometric marginals and contains the NGINAR(1) process as a particular case. In addition, various properties of the new process are derived such as conditional distribution and autocorrelation structure. Yule-Walker, probability based Yule-Walker, conditional least squares and conditional maximum likelihood estimators of the model parameters are derived. An extensive Monte Carlo experiment is conducted to evaluate the performances of these estimators in finite samples. Forecasting performances of the model are discussed. Application to a real data set shows the flexibility and potentiality of the new model.  相似文献   

10.
Frailty models are often used to model heterogeneity in survival analysis. The distribution of the frailty is generally assumed to be continuous. In some circumstances, it is appropriate to consider discrete frailty distributions. Having zero frailty can be interpreted as being immune, and population heterogeneity may be analysed using discrete frailty models. In this paper, survival functions are derived for the frailty models based on the discrete compound Poisson process. Maximum likelihood estimation procedures for the parameters are studied. We examine the fit of the models to earthquake and the traffic accidents’ data sets from Turkey.  相似文献   

11.
A mixed integer-valued autoregressive model of order one, based on the binomial and the generalized binomial thinning operator is introduced. Geometric marginal distribution is considered. Properties of the model are analysed, unknown parameters are estimated and some numerical results of the estimates are obtained. Finally, model is applied on two real data sets and compared to some relevant models.  相似文献   

12.
13.
Integer-valued time series models and their applications have attracted a lot of attention over the last years. In this paper, we introduce a class of observation-driven random coefficient integer-valued autoregressive processes based on negative binomial thinning, where the autoregressive parameter depends on the observed values of the previous moment. Basic probability and statistics properties of the process are established. The unknown parameters are estimated by the conditional least squares and empirical likelihood methods. Specially, we consider three aspects of the empirical likelihood method: maximum empirical likelihood estimate, confidence region and EL test. The performance of the two estimation methods is compared through simulation studies. Finally, an application to a real data example is provided.  相似文献   

14.
In this article, we consider a first-order integer-valued autoregressive (INAR(1)) model. Then, we propose change point estimators for the rate and dependence parameters in INAR(1) model using maximum likelihood estimation method when the type of change belongs to a family of monotonic changes. To monitor the process, a combined EWMA and c control chart is considered. The results show that the proposed change point estimators provide efficient estimates of the change time. At the end, to illustrate the application of the proposed estimators, a real case related to IP counts data is investigated.  相似文献   

15.
16.
The INAR(k) model has been widely used in various kinds of fields. However, there are little discussions about the INAR(k) model with the occasional level shift random noise. In this paper, the maximum likelihood estimation of parameter based on martingale difference sequence is given, the log empirical likelihood ratio test statistic is obtained and the test statistic converges to chi-square distribution, we prove that the confidence region of the parameter is convex. Furthermore, the numerical simulation of the proposed INAR(k) model is given, which illustrates the effectiveness of the model. Then, the proofs of asymptotic results are given in the Appendix.  相似文献   

17.
In this paper, we propose a method based on wavelet analysis to detect and estimate jump points in non parametric regression function. This method is applied to AR(1) noise process under random design. First, the test statistics are constructed on the empirical wavelet coefficients. Then, under the null hypothesis, the critical values of test statistics are obtained. Under the alternative, the consistency of the test is proved. Afterward, the rate of convergence, the estimators of the number, and locations of change points are given theoretically. Finally, the excellent performance of our method is demonstrated through simulations using artificial and real datasets.  相似文献   

18.
19.
Homogeneity of between-individual variance and autocorrelation coefficients is one of assumptions in the study of longitudinal data. However, the assumption could be challenging due to the complexity of the dataset. In the paper we propose and analyze nonlinear mixed models with AR(1) errors for longitudinal data, intend to introduce Huber's function in the log-likelihood function and get robust estimation, which may help to reduce the influence of outliers, by Fisher scoring method. Testing of homogeneity of variance among individuals and autocorrelation coefficients on the basis of Huber's M-estimation is studied later in the paper. Simulation studies are carried to assess performance of score test we proposed. Results obtained from plasma concentrations data are reported as an illustrative example.  相似文献   

20.
The basic model in this paper is an AR(1) model with a structural break in the AR parameter β at an unknown time k0. That is, yt = β1yt ? 1I{t ? k0} + β2yt ? 1I{t > k0} + ?t, t = 1, 2, ???, T, where I{ · } denotes the indicator function. Suppose |β1| < 1, |β2| < 1, and {?t, t ? 1} is a sequence of i.i.d. random variables which are in the domain of attraction of the normal law with zero mean and possibly infinite variance, then the limiting distributions for the least squares estimators of β1 and β2 are studied in the present paper, which extend some results in Chong (2001 Chong, T.L. (2001). Structural change in AR(1) models. Econometric Theory 17:87155.[Crossref], [Web of Science ®] [Google Scholar]).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号