首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
ABSTRACT

The effect of parameters estimation on profile monitoring methods has only been studied by a few researchers and only the assumption of a normal response variable has been tackled. However, in some practical situation, the normality assumption is violated and the response variable follows a discrete distribution such as Poisson. In this paper, we evaluate the effect of parameters estimation on the Phase II monitoring of Poisson regression profiles by considering two control charts, namely the Hotelling’s T2 and the multivariate exponentially weighted moving average (MEWMA) charts. Simulation studies in terms of the average run length (ARL) and the standard deviation of the run length (SDRL) are carried out to assess the effect of estimated parameters on the performance of Phase II monitoring approaches. The results reveal that both in-control and out-of-control performances of these charts are adversely affected when the regression parameters are estimated.  相似文献   

2.
In this paper, a non parametric approach is first proposed to monitor simple linear profiles with non normal error terms in Phase I and Phase II. In this approach, two control charts based on a transformation technique and decision on beliefs are designed in order to monitor the intercept and the slope, simultaneously. Then, some simulation experiments are performed in order to evaluate the performance of the proposed control charts in Phase II under both step and drift shifts in terms of out-of-control average run length (ARL1). Besides, the performance of the proposed control charts is compared to the ones of seven other existing schemes in the literature. Simulation results show that the proposed control charts outperform the other control charts in detecting both the small step and small drift shifts of intercept. However, they have a weaker performance compared to other control charts in detecting both small step and small drift shifts of the slope. At the end, a real example from an electronic industry is used to illustrate the implementation of the proposed method.  相似文献   

3.
ABSTRACT

In profile monitoring, control charts are proposed to detect unanticipated changes, and it is usually assumed that the in-control parameters are known. However, due to the characteristics of a system or process, the prespecified changes would appear in the process. Moreover, in most applications, the in-control parameters are usually unknown. To overcome these issues, we develop the zone control charts with estimated parameters to detect small shifts of these prespecified changes. The effects of estimation error have been investigated on the performance of the proposed charts. To account for the practitioner-to-practitioner variability, the expected average run length (ARL) and the standard deviation of the average run length (SDARL) is used as the performance metrics. Our results show that the estimation error results in the significant variation in the ARL distribution. Furthermore, in order to adequately reduce the variability, more phase I samples are required in terms of the SDARL metric than that in terms of the expected ARL metric. In addition, more observations on each sampled profile are suggested to improve the charts' performance, especially for small phase I sample sizes. Finally, an illustrative example is given to show the performance of the proposed zone control charts.  相似文献   

4.
The monitoring of process/product profiles is presently a growing and promising area of research in statistical process control. This study is aimed at developing monitoring schemes for nonlinear profiles with random effects. We utilize the technique of principal components analysis to analyze the covariance structure of the profiles and propose monitoring schemes based on principal component (PC) scores. The number of the PC scores used in constructing control charts is crucial to the detecting power. In the Phase I analysis of historical data, due to the dependency of the PC-scores, we adopt the usual Hotelling T 2 chart to check the stability. For Phase II monitoring, we study individual PC-score control charts, a combined chart scheme that combines all the PC-score charts, and a T 2 chart. Although an individual PC-score chart may be perfect for monitoring a particular mode of variation, a chart that can detect general shifts, such as the T 2 chart and the combined chart scheme, is more feasible in practice. The performances of the schemes under study are evaluated in terms of the average run length.  相似文献   

5.
The objective of this paper is to study the Phase I monitoring and change point estimation of autocorrelated Poisson profiles where the response values within each profile are autocorrelated. Two charts, the SLRT and the Hotelling's T2, are proposed along with an algorithm for parameter estimation. The detecting power of the proposed charts is compared using simulations in terms of the signal probability criterion. The performance of the SLRT method in estimating the change point in the regression parameters is also evaluated. Moreover, a real data example is presented to illustrate the application of the methods.  相似文献   

6.
ABSTRACT

In some applications, the quality of a process or product is best characterized by a functional relationship between a response variable and one or more explanatory variables. Profile monitoring is used to understand and to check the stability of this relationship or curve over time. In the existing simple linear regression profile models, it is often assumed that the data follow a single mode distribution and consequently the noise of the functional relationship follows a normal distribution. However, in some applications, it is likely that the data may follow a multiple-modes distribution. In this case, it is more appropriate to assume that the data follow a mixture profile. In this study, we focus on a mixture simple linear profile model, and propose new control schemes for Phase II monitoring. The proposed methods are shown to have good performance in a simulation study.  相似文献   

7.
In this article, a transformation method using the principal component analysis approach is first applied to remove the existing autocorrelation within each profile in Phase I monitoring of autocorrelated simple linear profiles. This easy-to-use approach is independent of the autocorrelation coefficient. Moreover, since it is a model-free method, it can be used for Phase I monitoring procedures. Then, five control schemes are proposed to monitor the parameters of the profile with uncorrelated error terms. The performances of the proposed control charts are evaluated and are compared through simulation experiments based on different values of autocorrelation coefficient as well as different shift scenarios in the parameters of the profile in terms of probability of receiving an out-of-control signal.  相似文献   

8.
In many practical cases, the quality of a product or process is characterized by multiple measurements constituting a line or curve that is referred to as a profile. In this article, we develop two approaches for monitoring process and product nonlinear profiles. The first approach consists of control chart methods to monitor nonlinear profiles using parametric estimates of regression model. In order to avoid the problems arising from complexity of coefficient estimation of nonlinear profiles, the second approach, which consists of using metrics to measure deviation from a reference curve, is proposed. The performance of the methods is evaluated through a numerical example using average run length criterion. The effect of sample size on the performance of both approaches is also investigated in this article.  相似文献   

9.
ABSTRACT

In this paper, we propose a control chart to monitor the Weibull shape parameter where the observations are censored due to competing risks. We assume that the failure occurs due to two competing risks that are independent and follow Weibull distribution with different shape and scale parameters. The control charts are proposed to monitor one or both of the shape parameters of competing risk distributions and established based on the conditional expected values. The proposed control chart for both shape parameters is used in certain situations and allows to monitor both shape parameters in only one chart. The control limits depend on the sample size, number of failures due to each risk and the desired stable average run length (ARL). We also consider the estimation problem of the target parameters when the Phase I sample is incomplete. We assumed that some of the products that fail during the life testing have a cause of failure that is only known to belong to a certain subset of all possible failures. This case is known as masking. In the presence of masking, the expectation-maximization (EM) algorithm is proposed to estimate the parameters. For both cases, with and without masking, the behaviour of ARLs of charts is studied through the numerical methods. The influence of masking on the performance of proposed charts is also studied through a simulation study. An example illustrates the applicability of the proposed charts.  相似文献   

10.
The existing synthetic exponential control charts are based on the assumption of known in-control parameter. However, the in-control parameter has to be estimated from a Phase I dataset. In this article, we use the exact probability distribution, especially the percentiles, mean, and standard deviation of the conditional average run length (ARL) to evaluate the effect of parameter estimation on the performance of the Phase II synthetic exponential charts. This approach accounts for the variability in the conditional ARL values of the synthetic chart obtained by different practitioners. Since parameter estimation results in more false alarms than expected, we develop an exact method to design the adjusted synthetic charts with desired conditional in-control performance. Results of known and unknown in-control parameter cases show that the control limit of the conforming run length sub-chart of the synthetic chart should be as small as possible.  相似文献   

11.
Self-starting control charts have been proposed in the literature to allow process monitoring when only a small amount of relevant data is available. In fact, self-starting charts are useful in monitoring a process quickly, without having to collect a sizable Phase I sample for estimating the in-control process parameters. In this paper, a new self-starting control charting procedure is proposed in which first an effective initial sample is chosen from the perspective of Six Sigma quality, then the successive sample means are either pooled or not pooled (sometimes pooling procedure) for computing next Q-statistics depending upon its signal. It is observed that the sample statistics obtained so from this in-control Phase I situation can serve as more efficient estimators of unknown parameters for Phase II monitoring. An example is considered to illustrate the construction of the proposed chart and to compare its performance with the existing ones.  相似文献   

12.
ABSTRACT

Profile monitoring is one of the new research areas in statistical process control. Most of the control charts in this area are designed with fixed sampling rate which makes the control chart slow in detecting small to moderate shifts. In order to improve the performance of the conventional fixed control charts, adaptive features are proposed in which, one or more design parameters vary during the process. In this paper the variable sample size feature of EWMA3 and MEWMA schemes are proposed for monitoring simple linear profiles. The EWMA3 method is based on the combination of three exponentially weighted moving average (EWMA) charts for monitoring three parameters of a simple linear profile separately and the Multivariate EWMA (MEWMA) chart is based on the using a single chart to monitor the coefficients and variance of a general linear profile. Also a two-sided control chart is proposed for monitoring the standard deviation in the EWMA3 method. The performance of the proposed charts is compared in terms of the average time to signal. Numerical examples show that using adaptive features increase the power of control charts in detecting the parameter shifts. Finally, the performance of the proposed variable sample size schemes is illustrated through a real case in the leather industry.  相似文献   

13.
When process data follow a particular curve in quality control, profile monitoring is suitable and appropriate for assessing process stability. Previous research in profile monitoring focusing on nonlinear parametric (P) modeling, involving both fixed and random-effects, was made under the assumption of an accurate nonlinear model specification. Lately, nonparametric (NP) methods have been used in the profile monitoring context in the absence of an obvious linear P model. This study introduces a novel technique in profile monitoring for any nonlinear and auto-correlated data. Referred to as the nonlinear mixed robust profile monitoring (NMRPM) method, it proposes a semiparametric (SP) approach that combines nonlinear P and NP profile fits for scenarios in which a nonlinear P model is adequate over part of the data but inadequate of the rest. These three methods (P, NP, and NMRPM) account for the auto-correlation within profiles and treats the collection of profiles as a random sample with a common population. During Phase I analysis, a version of Hotelling’s T2 statistic is proposed for each approach to identify abnormal profiles based on the estimated random effects and obtain the corresponding control limits. The performance of the NMRPM method is then evaluated using a real data set. Results reveal that the NMRPM method is robust to model misspecification and performs adequately against a correctly specified nonlinear P model. Control charts with the NMRPM method have excellent capability of detecting changes in Phase I data with control limits that are easily computable.  相似文献   

14.
Diagnosis aids in addition to detecting the out-of-control state is an important issue in multivariate multiple linear regression profiles monitoring; because a large number of parameters and profiles in this structure are involved. In this paper, we specifically concentrate on identification of profile(s) and parameter(s) which have changed during the process in multivariate multiple linear regression profiles structure in Phase II. We demonstrate the effectiveness of our proposed approaches through Monte Carlo simulations and a real case study in terms of accuracy percent.  相似文献   

15.
Control charts are statistical tools to monitor a process or a product. However, some processes cannot be controlled by monitoring a characteristic; instead, they need to be monitored using profiles. Economic-statistical design of profile monitoring means determining the parameters of a profile monitoring scheme such that total costs are minimized while statistical measures maintain proper values. While varying sampling interval usually increases the effectiveness of profile monitoring, economic-statistical design of variable sampling interval (VSI) profile monitoring is investigated in this paper. An extended Lorenzen–Vance function is used for modeling total costs in VSI model where the average time to signal is employed for depicting the statistical measure of the obtained profile monitoring scheme. Two sampling intervals; number of set points and the parameters of control charts that are used in profile monitoring are the variables that are obtained thorough the economic-statistical model. A genetic algorithm is employed to optimize the model and an experimental design approach is used for tuning its parameters. Sensitivity analysis and numerical results indicate satisfactory performance for the proposed model.  相似文献   

16.
We evaluate and compare the performance of Phase II simple linear regression profile approaches when only two observations are used to establish each profile. We propose an EWMA control chart based on average squared deviations from the in-control line, to be used in conjunction with two EWMA control charts based on the slope and Y-intercept estimators, to monitor changes in the three regression model parameters, i.e., the slope, intercept and variance. Simulations establish that the performance of the proposed technique is generally better than that of other approaches in detecting parameter shifts.  相似文献   

17.
This paper introduces a Markov model in Phase II profile monitoring with autocorrelated binary response variable. In the proposed approach, a logistic regression model is extended to describe the within-profile autocorrelation. The likelihood function is constructed and then a particle swarm optimization algorithm (PSO) is tuned and utilized to estimate the model parameters. Furthermore, two control charts are extended in which the covariance matrix is derived based on the Fisher information matrix. Simulation studies are conducted to evaluate the detecting capability of the proposed control charts. A numerical example is also given to illustrate the application of the proposed method.  相似文献   

18.
In recent years, risk-adjusted control charts that account for the preoperative risk of patients have been widely used for monitoring of surgical outcomes. Generally, risk-adjusted control charts have been developed on the basis of a binary classification of surgical outcomes. However, for a patient who survives an operation, it is reasonable to consider different grades of recovery in an ordinal manner. On the other hand, Phase I monitoring of risk-adjusted control charts has been neglected. Hence, in this paper, a general Phase I risk-adjusted control chart is proposed to monitor ordinal outcomes of surgical outcomes. The proposed risk-adjusted model is developed on the basis of proportional odds logistic regression models. The application of the proposed model is illustrated by analyzing the data in a case study and its performance is evaluated using a Monte Carlo simulation study.  相似文献   

19.
ABSTRACT

Zero-inflated probability models are used to model count data that have an excessive number of zeros. Shewhart-type control charts have been proposed for the monitoring of zero-inflated processes. Usually their performance is evaluated under the assumption of known process parameters. However, in practice, their values are rarely known and they have to be estimated from an in-control historical Phase I sample. In the present paper, we investigate the performance of Shewhart-type control charts for zero-inflated processes with estimated parameters and propose practical guidelines for the statistical design of the examined charts, when the size of the preliminary sample is predetermined.  相似文献   

20.
In this paper, the problem of monitoring process data that can be modelled by exponential distribution is considered when observations are from type-II censoring. Such data are common in many practical inspection environment. An average run length unbiased (ARL-unbiased) control scheme is developed when the in-control scale parameter is known. The performance of the proposed control charts are investigated in terms of the ARL and standard deviation of the run length. The effects of parameter estimation on the proposed control charts are also evaluated. Then, we consider the design of the ARL-unbiased control charts when the in-control scale parameter is estimated. Finally, an example is used to illustrate the implementation of the proposed control charts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号