首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Abstract

In this article we suggest a new multivariate autoregressive process for modeling time-dependent extreme value distributed observations. The idea behind the approach is to transform the original observations to latent variables that are univariate normally distributed. Then the vector autoregressive DCC model is fitted to the multivariate latent process. The distributional properties of the suggested model are extensively studied. The process parameters are estimated by applying a two-stage estimation procedure. We derive a prediction interval for future values of the suggested process. The results are applied in an empirically study by modeling the behavior of extreme daily stock prices.  相似文献   

2.
Abstract

In this article we propose an automatic selection of the bandwidth of the recursive kernel density estimators for spatial data defined by the stochastic approximation algorithm. We showed that, using the selected bandwidth and the stepsize which minimize the MWISE (Mean Weighted Integrated Squared Error), the recursive estimator will be quite similar to the nonrecursive one in terms of estimation error and much better in terms of computational costs. In addition, we obtain the central limit theorem for the nonparametric recursive density estimator under some mild conditions.  相似文献   

3.
ABSTRACT

This paper proposes a hysteretic autoregressive model with GARCH specification and a skew Student's t-error distribution for financial time series. With an integrated hysteresis zone, this model allows both the conditional mean and conditional volatility switching in a regime to be delayed when the hysteresis variable lies in a hysteresis zone. We perform Bayesian estimation via an adaptive Markov Chain Monte Carlo sampling scheme. The proposed Bayesian method allows simultaneous inferences for all unknown parameters, including threshold values and a delay parameter. To implement model selection, we propose a numerical approximation of the marginal likelihoods to posterior odds. The proposed methodology is illustrated using simulation studies and two major Asia stock basis series. We conduct a model comparison for variant hysteresis and threshold GARCH models based on the posterior odds ratios, finding strong evidence of the hysteretic effect and some asymmetric heavy-tailness. Versus multi-regime threshold GARCH models, this new collection of models is more suitable to describe real data sets. Finally, we employ Bayesian forecasting methods in a Value-at-Risk study of the return series.  相似文献   

4.
In this paper the periodic integer-valued autoregressive model of order one with period T, driven by a periodic sequence of independent Poisson-distributed random variables, is studied in some detail. Basic probabilistic and statistical properties of this model are discussed. Moreover, parameter estimation is also addressed. Specifically, the methods of estimation under analysis are the method of moments, least squares-type and likelihood-based ones. Their performance is compared through a simulation study.  相似文献   

5.
ABSTRACT

This paper is concerned with properties of a transitional Markov switching autoregressive (TMSAR) model, together with its maximum-likelihood estimation and inference. We extend existing MSAR models by allowing dependence of AR parameters on hidden states at time points prior to the current time t. A stationary solution is given and expressions for the theoretical autocovariance function are derived. Two time series are analyzed and the new model outperforms two existing MSAR models in terms of maximized log-likelihood, residual correlations, and one-step-ahead forecasting performance. The new model also gives more regime changes in agreement with real events.  相似文献   

6.
Abstract

This article considers linear models with a spatial autoregressive error structure. Extending Arnold and Wied (2010) Arnold, M., Wied, D. (2010). Improved GMM estimation of the spatial autoregressive error model. Econ. Lett. 108:6568.[Crossref], [Web of Science ®] [Google Scholar], who develop an improved generalized method of moment (GMM) estimator for the parameters of the disturbance process to reduce the bias of existing estimation approaches, we establish the asymptotic normality of a new weighted version of this improved estimator and derive the efficient weighting matrix. We also show that this efficiently weighted GMM estimator is feasible as long as the regression matrix of the underlying linear model is non stochastic and illustrate the performance of the new estimator by a Monte Carlo simulation and an application to real data.  相似文献   

7.
ABSTRACT

In this article, the unit root test for the AR(1) model is discussed, under the condition that the innovations of the model are in the domain of attraction of the normal law with possibly infinite variances. By using residual bootstrap with sample size m < n (n being the size of the original sample), we bootstrap the least-squares estimator of the autoregressive parameter. Under some mild assumptions, we prove that the null distribution of the unit root test statistic based on the least-square estimator of the autoregressive parameter can be approximated by using residual bootstrap.  相似文献   

8.
In this paper, we consider the shrinkage and penalty estimation procedures in the linear regression model with autoregressive errors of order p when it is conjectured that some of the regression parameters are inactive. We develop the statistical properties of the shrinkage estimation method including asymptotic distributional biases and risks. We show that the shrinkage estimators have a significantly higher relative efficiency than the classical estimator. Furthermore, we consider the two penalty estimators: least absolute shrinkage and selection operator (LASSO) and adaptive LASSO estimators, and numerically compare their relative performance with that of the shrinkage estimators. A Monte Carlo simulation experiment is conducted for different combinations of inactive predictors and the performance of each estimator is evaluated in terms of the simulated mean-squared error. This study shows that the shrinkage estimators are comparable to the penalty estimators when the number of inactive predictors in the model is relatively large. The shrinkage and penalty methods are applied to a real data set to illustrate the usefulness of the procedures in practice.  相似文献   

9.
ABSTRACT

Bootstrap-based unit root tests are a viable alternative to asymptotic distribution-based procedures and, in some cases, are preferable because of the serious size distortions associated with the latter tests under certain situations. While several bootstrap-based unit root tests exist for autoregressive moving average processes with homoskedastic errors, only one such test is available when the innovations are conditionally heteroskedastic. The details for the exact implementation of this procedure are currently available only for the first order autoregressive processes. Monte-Carlo results are also published only for this limited case. In this paper we demonstrate how this procedure can be extended to higher order autoregressive processes through a transformed series used in augmented Dickey–Fuller unit root tests. We also investigate the finite sample properties for higher order processes through a Monte-Carlo study. Results show that the proposed tests have reasonable power and size properties.  相似文献   

10.
Abstract

This article proposes a new approach to analyze multiple vector autoregressive (VAR) models that render us a newly constructed matrix autoregressive (MtAR) model based on a matrix-variate normal distribution with two covariance matrices. The MtAR is a generalization of VAR models where the two covariance matrices allow the extension of MtAR to a structural MtAR analysis. The proposed MtAR can also incorporate different lag orders across VAR systems that provide more flexibility to the model. The estimation results from a simulation study and an empirical study on macroeconomic application show favorable performance of our proposed models and method.  相似文献   

11.
In applications of spatial statistics, it is necessary to compute the product of some matrix W of spatial weights and a vector y of observations. The weighting matrix often needs to be adapted to the specific problems, such that the computation of Wy cannot necessarily be done with available R-packages. Hence, this article suggests one possibility treating such issues. The proposed technique avoids the computation of the matrix product by calculating each entry of Wy separately. Initially, a specific spatial autoregressive process is introduced. The performance of the proposed program is briefly compared to a basic program using the matrix multiplication.  相似文献   

12.

In this paper we consider a Bayesian analysis for an autoregressive model with random normal coefficients (RCA). For the proposed procedure we use conjugate priors for some parameters and improper vague priors for others. The inference for the parameters is made via Gibbs sampler and the convergence is assessed with multiple chains and Gelman and Rubin criterium. Forecasts are based on the predictive density of future observations. Some remarks are also made regarding order determination and stationarity. Applications to simulated and real series are given.  相似文献   

13.
In this paper, we propose a multivariate tt regression model with its mean and scale covariance modeled jointly for the analysis of longitudinal data. A modified Cholesky decomposition is adopted to factorize the dependence structure in terms of unconstrained autoregressive and scale innovation parameters. We present three distinct representations of the log-likelihood function of the model and study the associated properties. A computationally efficient Fisher scoring algorithm is developed for carrying out maximum likelihood estimation. The technique for the prediction of future responses in this context is also investigated. The implementation of the proposed methodology is illustrated through two real-life examples and extensive simulation studies.  相似文献   

14.
Abstract

This paper discusses inferential issues related to estimation of offspring mean and variance in a second order branching process, when both the offspring distributions are assumed to have identical mean and variance. Estimating equation approach is used to find the estimator of the offspring mean and the fact that a second order branching process model can be modeled as an autoregressive process is utilized to obtain the estimator of the offspring variance. Both the estimators are shown to be consistent and asymptotically normal. The second order branching process model is applied to H1N1 data for Pune, India, and Mexico and is found to be a suitable model. The estimates obtained from this model are used to compute the proportion of vaccination required for elimination of the disease.  相似文献   

15.
ABSTRACT

A new stationary first-order autoregressive process with Lindley marginal distribution, denoted as LAR(1) is introduced. We derive the probability function for the innovation process. We consider many properties of this process, involving spectral density, some multi-step ahead conditional measures, run probabilities, stationary solution, uniqueness and ergodicity. We estimate the unknown parameters of the process using three methods of estimation and investigate properties of the estimators with some numerical results to illustrate them. Some applications of the process are discussed to two real data sets and it is shown that the LAR(1) model fits better than other known non Gaussian AR(1) models.  相似文献   

16.
In some applications, the clustered survival data are arranged spatially such as clinical centers or geographical regions. Incorporating spatial variation in these data not only can improve the accuracy and efficiency of the parameter estimation, but it also investigates the spatial patterns of survivorship for identifying high-risk areas. Competing risks in survival data concern a situation where there is more than one cause of failure, but only the occurrence of the first one is observable. In this paper, we considered Bayesian subdistribution hazard regression models with spatial random effects for the clustered HIV/AIDS data. An intrinsic conditional autoregressive (ICAR) distribution was employed to model the areal spatial random effects. Comparison among competing models was performed by the deviance information criterion. We illustrated the gains of our model through application to the HIV/AIDS data and the simulation studies.KEYWORDS: Competing risks, subdistribution hazard, cumulative incidence function, spatial random effect, Markov chain Monte Carlo  相似文献   

17.
Abstract

In this paper, the drift parameter estimation for the one-dimensional skew Ornstein-Uhlenbeck process is considered. We derived the moment estimator in terms of the sample moments and invariant density. Then, we proved the strong consistency and asymptotic normality. Finally, some numerical experiments are presented to show the effect of the moment estimator.  相似文献   

18.
Abstract

In a quantitative linear model with errors following a stationary Gaussian, first-order autoregressive or AR(1) process, Generalized Least Squares (GLS) on raw data and Ordinary Least Squares (OLS) on prewhitened data are efficient methods of estimation of the slope parameters when the autocorrelation parameter of the error AR(1) process, ρ, is known. In practice, ρ is generally unknown. In the so-called two-stage estimation procedures, ρ is then estimated first before using the estimate of ρ to transform the data and estimate the slope parameters by OLS on the transformed data. Different estimators of ρ have been considered in previous studies. In this article, we study nine two-stage estimation procedures for their efficiency in estimating the slope parameters. Six of them (i.e., three noniterative, three iterative) are based on three estimators of ρ that have been considered previously. Two more (i.e., one noniterative, one iterative) are based on a new estimator of ρ that we propose: it is provided by the sample autocorrelation coefficient of the OLS residuals at lag 1, denoted r(1). Lastly, REstricted Maximum Likelihood (REML) represents a different type of two-stage estimation procedure whose efficiency has not been compared to the others yet. We also study the validity of the testing procedures derived from GLS and the nine two-stage estimation procedures. Efficiency and validity are analyzed in a Monte Carlo study. Three types of explanatory variable x in a simple quantitative linear model with AR(1) errors are considered in the time domain: Case 1, x is fixed; Case 2, x is purely random; and Case 3, x follows an AR(1) process with the same autocorrelation parameter value as the error AR(1) process. In a preliminary step, the number of inadmissible estimates and the efficiency of the different estimators of ρ are compared empirically, whereas their approximate expected value in finite samples and their asymptotic variance are derived theoretically. Thereafter, the efficiency of the estimation procedures and the validity of the derived testing procedures are discussed in terms of the sample size and the magnitude and sign of ρ. The noniterative two-stage estimation procedure based on the new estimator of ρ is shown to be more efficient for moderate values of ρ at small sample sizes. With the exception of small sample sizes, REML and its derived F-test perform the best overall. The asymptotic equivalence of two-stage estimation procedures, besides REML, is observed empirically. Differences related to the nature, fixed or random (uncorrelated or autocorrelated), of the explanatory variable are also discussed.  相似文献   

19.
ABSTRACT

This article is devoted to study the problem of estimation in the periodic restricted exponential autoregressive EXPAR(1) models. The estimation procedure that is used is the least-square method. Simulation studies are carried out in order to check the asymptotic properties. An application to monthly flow data for the Fraser River in British Columbia is included.  相似文献   

20.
Many estimation procedures for quantitative linear models with autocorrelated errors have been proposed in the literature. A number of these procedures have been compared in various ways for different sample sizes and autocorrelation parameters values and for structured or random explanatory vaiables. In this paper, we revisit three situations that were considered to some extent in previous studies, by comparing ten estimation procedures: Ordinary Least Squares (OLS), Generalized Least Squares (GLS), estimated Generalized Least Squares (six procedures), Maximum Likelihood (ML), and First Differences (FD). The six estimated GLS procedures and the ML procedure differ in the way the error autocovariance matrix is estimated. The three situations can be defined as follows: Case 1, the explanatory variable x in the simple linear regression is fixed; Case 2,x is purely random; and Case 3x is first-order autoregressive. Following a theoretical presentation, the ten estimation procedures are compared in a Monte Carlo study conducted in the time domain, where the errors are first-order autoregressive in Cases 1-3. The measure of comparison for the estimation procedures is their efficiency relative to OLS. It is evaluated as a function of the time series length and the magnitude and sign of the error autocorrelation parameter. Overall, knowledge of the model of the time series process generating the errors enhances efficiency in estimated GLS. Differences in the efficiency of estimation procedures between Case 1 and Cases 2 and 3 as well as differences in efficiency among procedures in a given situation are observed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号