共查询到20条相似文献,搜索用时 0 毫秒
1.
AbstractIn the present article, an effort has been made to develop calibration estimators of the population mean under two-stage stratified random sampling design when auxiliary information is available at primary stage unit (psu) level. The properties of the developed estimators are derived in-terms of design based approximate variance and approximate consistent design based estimator of the variance. Some simulation studies have been conducted to investigate the relative performance of calibration estimator over the usual estimator of the population mean without using auxiliary information in two-stage stratified random sampling. Proposed calibration estimators have outperformed the usual estimator without using auxiliary information. 相似文献
2.
When there is an outlier in the data set, the efficiency of traditional methods decreases. In order to solve this problem, Kadilar et al. (2007) adapted Huber-M method which is only one of robust regression methods to ratio-type estimators and decreased the effect of outlier problem. In this study, new ratio-type estimators are proposed by considering Tukey-M, Hampel M, Huber MM, LTS, LMS and LAD robust methods based on the Kadilar et al. (2007). Theoretically, we obtain the mean square error (MSE) for these estimators. We compared with MSE values of proposed estimators and MSE values of estimators based on Huber-M and OLS methods. As a result of these comparisons, we observed that our proposed estimators give more efficient results than both Huber M approach which was proposed by Kadilar et al. (2007) and OLS approach. Also, under all conditions, all of the other proposed estimators except Lad method are more efficient than robust estimators proposed by Kadilar et al. (2007). And, these theoretical results are supported with the aid of a numerical example and simulation by basing on data that includes an outlier. 相似文献
3.
Gupta and Shabbir 2 have suggested an alternative form of ratio-type estimators for estimating the population mean. In this paper, we obtained a corrected version for the mean square error (MSE) of the Gupta–Shabbir estimator, up to first order of approximation, and the optimum case is discussed. We expand this estimator to the stratified random sampling and propose general classes for combined and separate estimators. Also an empirical study is carried out to show the properties of the proposed estimators. 相似文献
4.
Daniel F. Linder Lili Yu Arpita Chatterjee Yisong Huang Robert Vogel 《Journal of applied statistics》2015,42(12):2571-2583
We investigate the relative performance of stratified bivariate ranked set sampling (SBVRSS), with respect to stratified simple random sampling (SSRS) for estimating the population mean with regression methods. The mean and variance of the proposed estimators are derived with the mean being shown to be unbiased. We perform a simulation study to compare the relative efficiency of SBVRSS to SSRS under various data-generating scenarios. We also compare the two sampling schemes on a real data set from trauma victims in a hospital setting. The results of our simulation study and the real data illustration indicate that using SBVRSS for regression estimation provides more efficiency than SSRS in most cases. 相似文献
5.
Nilgün Özgül 《Journal of Statistical Computation and Simulation》2018,88(13):2561-2572
This paper develops the theory of calibration estimation and proposes calibration approach alternative to existing calibration estimators for estimating population mean of the study variable using auxiliary variable in stratified sampling. The theory of new calibration estimation is given and optimum weights are derived. A simulation study is carried out to performance of the proposed calibration estimator with other existing calibration estimators. The results reveal that the proposed calibration estimators are more efficient than Tracy et al., Singh et al., Singh calibration estimators of the population mean. 相似文献
6.
This work considers the problem of estimating a quantile function based on different stratified sampling mechanism. First, we develop an estimate for population quantiles based on stratified simple random sampling (SSRS) and extend the discussion for stratified ranked set sampling (SRSS). Furthermore, the asymptotic behavior of the proposed estimators are presented. In addition, we derive an analytical expression for the optimal allocation under both sampling schemes. Simulation studies are designed to examine the performance of the proposed estimators under varying distributional assumptions. The efficiency of the proposed estimates is further illustrated by analyzing a real data set from CHNS. 相似文献
7.
8.
In this paper, efficient class of estimators for population mean using two auxiliary variates is suggested. It has been shown that the suggested estimator is more efficient than usual unbiased estimator in stratified random sampling, usual ratio and product-type estimators, Tailor and Lone (2012, 2014) estimators, and other considered estimators. The bias and mean-squared error of the suggested estimator are obtained up to the first degree of approximation. Conditions under which the suggested estimator is more efficient than other considered estimators are obtained. An empirical study has been carried out to demonstrate the performances of the suggested estimator. 相似文献
9.
We propose an improved difference-cum-exponential ratio type estimator for estimating the finite population mean in simple and stratified random sampling using two auxiliary variables. We obtain properties of the estimators up to first order of approximation. The proposed class of estimators is found to be more efficient than the usual sample mean estimator, ratio estimator, exponential ratio type estimator, usual two difference type estimators, Rao (1991) estimator, Gupta and Shabbir (2008) estimator, and Grover and Kaur (2011) estimator. We use six real data sets in simple random sampling and two in stratified sampling for numerical comparisons. 相似文献
10.
In this paper, we consider chain ratio and regression type estimators for estimating median in survey sampling. We find expressions
for the variance of the chain-ratio and chain-regression type estimators considered in the present investigation. The optimum
values of the first phase and second phase sample sizes are also obtained for the fixed cost of survey. The relative efficiency
of chain-ratio and chain-regression type estimators have been studied in comparison to ratio and regression type estimators
of median proposed by Singh, Joarder and Tracy (2001). 相似文献
11.
Mohammad Fraiwan Al-Saleh & Gang Zheng 《Australian & New Zealand Journal of Statistics》2002,44(2):221-232
The superiority of ranked set sampling (RSS) over simple random sampling (SRS) for estimating the mean of a population is well known. This paper introduces and investigates a bivariate version of RSS for estimating the means of two characteristics simultaneously. It turns out that this technique is always superior to SRS and the usual univariate RSS of the same size. The performance of this procedure for a specific distribution can be evaluated using simulation or numerical computation. For the bivariate normal distribution, the efficiency of the procedure with respect to that of SRS is evaluated exactly for set size m = 2 and 3. The paper shows that the proposed estimator is more efficient than the regression RSS estimators proposed by Yu & Lam (1997) and Chen (2001). Real data that consist of heights and diameters of 399 trees are used to illustrate the procedure. The procedure can be generalized to the case of multiple characteristics. 相似文献
12.
Ratio and product estimators in stratified random sampling 总被引:1,自引:0,他引:1
Khoshnevisan et al. [2007. A general family of estimators for estimating population mean using known value of some population parameter(s). Far East Journal of Theoretical Statistics 22, 181–191] have introduced a family of estimators using auxiliary information in simple random sampling. They have showed that these estimators are more efficient than the classical ratio estimator and that the minimum value of the mean square error (MSE) of this family is equal to the value of MSE of regression estimator. In this article, we adapt the estimators in this family to the stratified random sampling and motivated by the estimator in Searls [1964. Utilization of known coefficient of kurtosis in the estimation procedure of variance. Journal of the American Statistical Association 59, 1225–1226], we also propose a new family of estimators for the stratified random sampling. The expressions of bias and MSE of the adapted and proposed families are derived in a general form. Besides, considering the minimum cases of these MSE equations, the efficient conditions between the adapted and proposed families are obtained. Moreover, these theoretical findings are supported by a numerical example with original data. 相似文献
13.
《Journal of Statistical Computation and Simulation》2012,82(18):3694-3707
ABSTRACTThis paper deals with the problem of estimating the finite population mean in stratified random sampling by using two auxiliary variables. This paper proposed a ratio-cum-product exponential type estimator of population mean under different situations: (i) when there is presence of non-response and measurement errors on the study as well as auxiliary variables; (ii) when there is non-response on the study and auxiliary variables but with no measurement error; (iii) when there is complete response on study variable but there is presence of non-response and measurement error on the auxiliary variables and (iv) when there are complete response and measurement error on study as well as auxiliary variables. The expressions of the bias and mean square error of the proposed estimator have been obtained up to the first degree of approximation. The proposed estimator has been compared with usual unbiased estimator, ratio estimator and other existing estimators and the conditions obtained to show the efficacy of the proposed estimator over other considered estimators. Simulation study is carried out to support the theoretical findings. 相似文献
14.
T. J. Rao 《统计学通讯:理论与方法》2013,42(10):3325-3340
In this paper we have examined certain techiques suggested in the literature for improving the ratio and regression methods of estimation and demonstrated that these techniques are not very profitable. 相似文献
15.
This study focuses on the estimation of population mean of a sensitive variable in stratified random sampling based on randomized response technique (RRT) when the observations are contaminated by measurement errors (ME). A generalized estimator of population mean is proposed by using additively scrambled responses for the sensitive variable. The expressions for the bias and mean square error (MSE) of the proposed estimator are derived. The performance of the proposed estimator is evaluated both theoretically and empirically. Results are also applied to a real data set. 相似文献
16.
In most economic and business surveys, the target variables (e.g. turnover of enterprises, income of households, etc.) commonly resemble skewed distributions with many small and few large units. In such surveys, if a stratified sampling technique is used as a method of sampling and estimation, the convenient way of stratification such as the use of demographical variables (e.g. gender, socioeconomic class, geographical region, religion, ethnicity, etc.) or other natural criteria, which is widely practiced in economic surveys, may fail to form homogeneous strata and is not much useful in order to increase the precision of the estimates of variables of interest. In this paper, a stratified sampling design for economic surveys based on auxiliary information has been developed, which can be used for constructing optimum stratification and determining optimum sample allocation to maximize the precision in estimate. 相似文献
17.
In the present paper, a multi-objective goal optimization mechanism is developed by trading off between cost and variance. Both are adversaries to each other while allocating a sample size even in stratified sampling design. Discussion section shows how these adversaries put their influence on optimal selection. This is a dual optimization procedure in which variance or mean square error is optimized in the first step and then considering some compromise on variance, cost is optimized. The process is applied to both individual and multi-objective programming models. 相似文献
18.
In this paper, we suggest three new ratio estimators of the population mean using quartiles of the auxiliary variable when there are missing data from the sample units. The suggested estimators are investigated under the simple random sampling method. We obtain the mean square errors equations for these estimators. The suggested estimators are compared with the sample mean and ratio estimators in the case of missing data. Also, they are compared with estimators in Singh and Horn [Compromised imputation in survey sampling, Metrika 51 (2000), pp. 267–276], Singh and Deo [Imputation by power transformation, Statist. Papers 45 (2003), pp. 555–579], and Kadilar and Cingi [Estimators for the population mean in the case of missing data, Commun. Stat.-Theory Methods, 37 (2008), pp. 2226–2236] and present under which conditions the proposed estimators are more efficient than other estimators. In terms of accuracy and of the coverage of the bootstrap confidence intervals, the suggested estimators performed better than other estimators. 相似文献
19.
Housila P. Singh 《统计学通讯:理论与方法》2019,48(4):794-809
This paper proposes an efficient stratified randomized response model based on Chang et al.'s (2004) model. We have obtained the variance of the proposed estimator of πs, the proportion of the respondents in the population belonging to a sensitive group, under proportional and Neyman allocations. It is shown that the estimator based on the proposed model is more efficient than the Chang et al.'s (2004) estimator under both proportional as well as Neyman allocations, Hong et al.'s (1994) estimator and Kim and Warde's (2004) estimator. Numerical illustration and pictorial representation are given in support of the present study. 相似文献
20.
Aylin Göçoğlu 《Journal of Statistical Computation and Simulation》2019,89(14):2694-2710
In this paper, proportion estimators and associated variance estimators are proposed for a binary variable with a concomitant variable based on modified ranked set sampling methods, which are extreme ranked set sampling (ERSS), median ranked set sampling (MRSS), percentile ranked set sampling (Per-RSS) and L ranked set sampling (LRSS) methods. The Monte Carlo simulation study is performed to compare the performance of the estimators based on bias, mean squared error, and relative efficiency for different levels of correlation coefficient, set and cycle sizes under normal and log-normal distributions. Moreover, the study is supported with real data application. 相似文献