首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current approach to health risk assessment of toxic waste sites in the U.S. may lead to considerable expenditure of resources without any meaningful reduction in population exposure. Risk assessment methods used generally ignore background exposures and consider only incremental risk estimates for maximally exposed individuals. Such risk estimates do not address true public health risks to which background exposures also contribute. The purpose of this paper is to recommend a new approach to risk assessment and risk management concerning toxic waste sites. Under this new approach, which we have called public health risk assessment, chemical substances would be classified into a level of concern based on the potential health risks associated with typical national and regional background exposures. Site assessment would then be based on the level of concern for the particular pollutants involved and the potential contribution of site contaminants to typical background human exposures. While various problems can be foreseen with this approach, the key advantage is that resources would be allocated to reduce the most important sources of human exposure, and site remediation decisions could be simplified by focussing on exposure assessment rather than questionable risk extrapolations.  相似文献   

2.
《Risk analysis》2018,38(4):724-754
A bounding risk assessment is presented that evaluates possible human health risk from a hypothetical scenario involving a 10,000‐gallon release of flowback water from horizontal fracturing of Marcellus Shale. The water is assumed to be spilled on the ground, infiltrates into groundwater that is a source of drinking water, and an adult and child located downgradient drink the groundwater. Key uncertainties in estimating risk are given explicit quantitative treatment using Monte Carlo analysis. Chemicals that contribute significantly to estimated health risks are identified, as are key uncertainties and variables to which risk estimates are sensitive. The results show that hypothetical exposure via drinking water impacted by chemicals in Marcellus Shale flowback water, assumed to be spilled onto the ground surface, results in predicted bounds between 10−10 and 10−6 (for both adult and child receptors) for excess lifetime cancer risk. Cumulative hazard indices (HICUMULATIVE) resulting from these hypothetical exposures have predicted bounds (5th to 95th percentile) between 0.02 and 35 for assumed adult receptors and 0.1 and 146 for assumed child receptors. Predicted health risks are dominated by noncancer endpoints related to ingestion of barium and lithium in impacted groundwater. Hazard indices above unity are largely related to exposure to lithium. Salinity taste thresholds are likely to be exceeded before drinking water exposures result in adverse health effects. The findings provide focus for policy discussions concerning flowback water risk management. They also indicate ways to improve the ability to estimate health risks from drinking water impacted by a flowback water spill (i.e., reducing uncertainty).  相似文献   

3.
The Occupational Safety and Health Administration (OSHA) is developing regulations to amend existing standards for occupational exposure to respirable crystalline silica by establishing a new permissible exposure limit as well as a series of ancillary provisions for controlling exposure. This article briefly reviews OSHA's proposed regulatory approach and the statutory authority on which it is based. It then evaluates OSHA's preliminary determination of significant risk and its analysis of the risk reduction achievable by its proposed controls. It recognizes that OSHA faces multiple challenges in devising a regulatory approach that reduces exposures and health risks and meets its statutory goal. However, the greatest challenge to reducing risks associated with silica exposure is not the lack of incentives (for either employers or employees) but rather lack of information, particularly information on the relative toxicity of different forms of silica. The article finds that OSHA's proposed rule would contribute little in the way of new information, particularly since it is largely based on information that is at least a decade old—a significant deficiency, given the rapidly changing conditions observed over the last 45 years. The article concludes with recommendations for alternative approaches that would be more likely to generate information needed to improve worker health outcomes.  相似文献   

4.
Assessing Exposures to Environmental Tobacco Smoke   总被引:1,自引:0,他引:1  
The combustion of tobacco indoors results in the emission of a wide range of air contaminants that are associated with a variety of acute and chronic health and comfort effects. Exposures to environmental tobacco smoke (ETS) are assessed for epidemiologic studies and risk assessment and risk management applications. An individual's or population's exposure to ETS can be assessed by direct methods, which employ personal air monitoring and biomarkers, and indirect methods, which utilize various degrees of microenvironmental measurements of spaces, models, and questionnaires in combination with time-activity information. The major issues related to assessing exposures to ETS are summarized and discussed, including the physical-chemical nature of ETS air contaminants, use of proxy air contaminants to represent ETS, use of biomarkers, models for estimating ETS concentrations indoors, and the application of questionnaires.  相似文献   

5.
Workplace exposures to airborne chemicals are regulated in the U.S. by the Occupational Safety and Health Administration (OSHA) via the promulgation of permissible exposure limits (PELs). These limits, usually defined as eight-hour time-weighted average values, are enforced as concentrations never to be exceeded. In the case of chronic or delayed toxicants, the PEL is determined from epidemiological evidence and/or quantitative risk assessments based on long-term mean exposures or, equivalently, cumulative lifetime exposures. A statistical model was used to investigate the relation between the compliance strategy, the PEL as a limit never to be exceeded, and the health risk as measured by the probability that an individual's long-term mean exposure concentration is above the PEL. The model incorporates within-worker and between-worker variability in exposure, and assumes the relevant distributions to be log-normal. When data are inadequate to estimate the parameters of the full model, as it is in compliance inspections, it is argued that the probability of a random measurement being above the PEL must be regarded as a lower bound on the probability that a randomly selected worker's long-term mean exposure concentration will exceed the PEL. It is concluded that OSHA's compliance strategy is a reasonable, as well as a practical, means of limiting health risk for chronic or delayed toxicants.  相似文献   

6.
Estimating the potential health risk encountered by workers due to their exposure to various chemicals is enormously complex, since many chemicals be involved and each may have multiple toxic effects. As an aid to this estimation process, a computer program, or model, which computes index numbers expressing the relative health risk of occupational groups due to their potential chemical exposures was developed at the National Institute for Occupational Safety and Health (NIOSH). This model considers an inventory of the chemicals to which specific occupational groups are potentially exposed, the published information regarding the toxic effects of each chemical, and the conditions of occupational exposure. The system then develops indices of potential occupational group health risk by considering weighted combinations of eight distinct health effects. No direct comparison with external occupational risk indices is currently possible, but internal testing of the model reveals no obvious inconsistencies.  相似文献   

7.
Estimating the potential health risk encountered by workers due to their exposure to various chemicals is enormously complex, since many chemicals may be involved and each may have multiple toxic effects. As an aid to this estimation process, a computer program, or model, which computes index numbers expressing the relative health risk of occupational groups due to their potential chemical exposures was developed at the National Institute for Occupational Safety and Health (NIOSH). This model considers an inventory of the chemicals to which specific occupational groups are potentially exposed, the published information regarding the toxic effects of each chemical, and the conditions of occupational exposure. The system then develops indices of potential occupational group health risk by considering weighted combinations of eight distinct health effects. No direct comparison with external occupational risk indices is currently possible, but internal testing of the model reveals no obvious inconsistencies.  相似文献   

8.
A quantitative approach to risk management for accidents in light water nuclear power reactors is proposed to serve as one focus for discussion. In this proposal risk management is divided into two major tasks: the predominantly social and political task of setting the safety goals and the technical task of estimating the risks and deciding whether the safety goals have been met. The proposed safety goals include limits on the following: risk to the individual of early death or delayed cancer death; overall societal risk of early or delayed death; and the frequency of core melt accidents as well as the frequency of containment failure, given a core melt. Also included are a small element of risk aversion and an "as low as reasonably achievable" (ALARA) approach with a cost-effectviness criterion which includes both economic and health effects.  相似文献   

9.
Compliance Versus Risk in Assessing Occupational Exposures   总被引:1,自引:0,他引:1  
Assessments of occupational exposures to chemicals are generally based upon the practice of compliance testing in which the probability of compliance is related to the exceedance [γ, the likelihood that any measurement would exceed an occupational exposure limit (OEL)] and the number of measurements obtained. On the other hand, workers’ chronic health risks generally depend upon cumulative lifetime exposures which are not directly related to the probability of compliance. In this paper we define the probability of “overexposure” (θ) as the likelihood that individual risk (a function of cumulative exposure) exceeds the risk inherent in the OEL (a function of the OEL and duration of exposure). We regard θ as a relevant measure of individual risk for chemicals, such as carcinogens, which produce chronic effects after long-term exposures but not necessarily for acutely-toxic substances which can produce effects relatively quickly. We apply a random-effects model to data from 179 groups of workers, exposed to a variety of chemical agents, and obtain parameter estimates for the group mean exposure and the within- and between-worker components of variance. These estimates are then combined with OELs to generate estimates of γ and θ. We show that compliance testing can significantly underestimate the health risk when sample sizes are small. That is, there can be large probabilities of compliance with typical sample sizes, despite the fact that large proportions of the working population have individual risks greater than the risk inherent in the OEL. We demonstrate further that, because the relationship between θ and γ depends upon the within- and between-worker components of variance, it cannot be assumed a priori that exceedance is a conservative surrogate for overexposure. Thus, we conclude that assessment practices which focus upon either compliance or exceedance are problematic and recommend that employers evaluate exposures relative to the probabilities of overexposure.  相似文献   

10.
To assess the health benefits gained from the use of cleaner burning gasoline, an analysis was conducted of changes in the atmospheric concentration of eight VOCs: acetaldehyde, benzene, 1,3-butadiene, ethylbenzene, formaldehyde, POM, toluene, and xylenes resulting from the use of reformulated gasoline and oxyfuel containing the additive MTBE. Modeled ambient air concentrations of VOCs were used to assess three seasonally-based scenarios: baseline gasoline compared to (a) summer MTBE:RFG, (b) winter MTBE:RFG, and (c) MTBE oxyfuel. The model predicts that the addition of MTBE to RFG or oxyfuel will decrease acetaldehyde, benzene, 1,3-butadiene and POM, but increase formaldehyde tailpipe emissions. The increased formaldehyde emissions, however, will be offset by the reduction of formaldehyde formation in the atmosphere from other VOCs. Using a range of plausible risk estimates, the analysis predicts a positive health benefit, i.e., a decline in cancer incidence associated with use of MTBE:RFG and MTBE oxyfuel. Using EPA cancer risk estimates, reduction in 1,3-butadiene exposure accounts for the greatest health benefit while reduction of benzene exposure accounts for the greatest health benefits based on alternative risk estimates. An analysis of microenvironment monitoring data indicates that most exposures to VOCs are significantly below levels of concern based on established margin-of-safety standards. The analysis does suggest, however, that health effects associated with short-term exposures to acetaldehyde and benzene may warrant further investigation.  相似文献   

11.
《Risk analysis》2018,38(1):163-176
The U.S. Environmental Protection Agency (EPA) uses health risk assessment to help inform its decisions in setting national ambient air quality standards (NAAQS). EPA's standard approach is to make epidemiologically‐based risk estimates based on a single statistical model selected from the scientific literature, called the “core” model. The uncertainty presented for “core” risk estimates reflects only the statistical uncertainty associated with that one model's concentration‐response function parameter estimate(s). However, epidemiologically‐based risk estimates are also subject to “model uncertainty,” which is a lack of knowledge about which of many plausible model specifications and data sets best reflects the true relationship between health and ambient pollutant concentrations. In 2002, a National Academies of Sciences (NAS) committee recommended that model uncertainty be integrated into EPA's standard risk analysis approach. This article discusses how model uncertainty can be taken into account with an integrated uncertainty analysis (IUA) of health risk estimates. It provides an illustrative numerical example based on risk of premature death from respiratory mortality due to long‐term exposures to ambient ozone, which is a health risk considered in the 2015 ozone NAAQS decision. This example demonstrates that use of IUA to quantitatively incorporate key model uncertainties into risk estimates produces a substantially altered understanding of the potential public health gain of a NAAQS policy decision, and that IUA can also produce more helpful insights to guide that decision, such as evidence of decreasing incremental health gains from progressive tightening of a NAAQS.  相似文献   

12.
《Risk analysis》1996,16(6):841-848
Currently, risk assessments of the potential human health effects associated with exposure to pathogens are utilizing the conceptual framework that was developed to assess risks associated with chemical exposures. However, the applicability of the chemical framework is problematic due to many issues that are unique to assessing risks associated with pathogens. These include, but are not limited to, an assessment of pathogen/host interactions, consideration of secondary spread, consideration of short- and long-term immunity, and an assessment of conditions that allow the microorganism to propagate. To address this concern, a working group was convened to develop a conceptual framework to assess the risks of human disease associated with exposure to pathogenic microorganisms. The framework that was developed consists of three phases: problem formulation, analysis (which includes characterization of exposure and human health effects), and risk characterization. The framework emphasizes the dynamic and iterative nature of the risk assessment process, and allows wide latitude for planning and conducting risk assessments in diverse situations, each based on the common principles discussed in the framework.  相似文献   

13.
Any personal or societal activity, besides bringing us benefits, also carries some risk. Energy production and use are no exceptions. In order to judge these risks, they must be quantified, and the risks of all alternative methods of producing this energy must then be compared among each other. These risks originate in many parts of the energy cycle; they are diverse in character and involve different parts of the population. It is therefore necessary to discriminate between many aspects of risk so that only reasonably comparable categories are compared. The results of a critical analysis of the international risk literature are presented, which are applicable to power production plants as they could be built today in central European countries. This review pays special attention to the possibility of severe accidents occurring, which attract so much attention in our modern societies. It turns out that the health risks of routine nuclear energy production are lower than the risks of other energy options, particularly for the general public. The probability of a severe accident occurring is far higher for all conventional energy options. Only the renewable systems utilizing the energy of the sun and the wind are not susceptible to severe accidents.  相似文献   

14.
15.
This study examines the perceived risks and mitigating behavior of Maine households who received new information on their exposures to significant health risks from indoor radon. The observed responses of these households illustrate conceptual issues related to designing an effective risk information program. Despite the involvement of generally well-motivated homeowners and well-intentioned researchers and government officials, we conclude that the risk information approach used in Maine failed to induce appropriate, cost-effective voluntary protection. The results indicate that, after receiving radon test results, information on associated health risks, and suggestions on how to reduce exposures: perceived risks tended to understate objective risks by orders of magnitude, and there was no statistically significant relationship between mitigating behavior and objective risks. These results suggest that the formation of risk perceptions and subsequent behavioral adjustments involve complex interactions among information, contextual, socioeconomic, and psychological variables. Therefore, government programs that seek to reduce health and safety risks with information programs, instead of using more conventional enforced standards, must be crafted very carefully to accommodate this complex process.  相似文献   

16.
The Theory of Risk Homeostasis: Implications for Safety and Health   总被引:9,自引:0,他引:9  
No strategy for countermeasure design or future directions of research in the areas of human behavior which leads to traffic accidents or lifestyle-related diseases can be rationally developed without an acceptable working theory of human behavior in these domains. For this purpose, an attempt has been made to conceptually integrate the available evidence with respect to the role of human behavior in the causation of road accidents. From this integrative effort it would seem that the accident rate is ultimately dependent on one factor only, the target level of risk in the population concerned which acts as the reference variable in a homeostatic process relating accident rate to human motivation. Various policy tactics for the purpose of modifying this target level of risk have been pointed out and the theory of risk homeostasis has been speculatively extended to the areas of lifestyle-dependent morbidity and mortality.  相似文献   

17.
Issues in Ecological Risk Assessment: The CRAM Perspective   总被引:1,自引:0,他引:1  
In 1989, a Committee on Risk Assessment Methodology (CRAM) was convened by the National Research Council (NRC) to identify and investigate important scientific issues in risk assessment. One of the first issues considered by the committee was the development of a conceptual framework for ecological risk assessment, defined as "the characterization of the adverse ecological effects of environmental exposures to hazards imposed by human activities." Adverse ecological effects include all biological and nonbiological environmental changes that society perceives as undesirable. The committee's opinion was that a general framework is needed to define the relationship of ecological risk assessment to environmental management and to facilitate the development of uniform technical guidelines. The framework for human health risk assessment proposed by the NRC in 1983 was adopted as a starting point for discussion. CRAM concluded that, although ecological risk assessment and human health risk assessment differ substantially in terms of scientific disciplines and technical problems, the underlying decision process is the same for both. Therefore, CRAM recommended that the 1983 risk assessment framework be modified to accommodate both human health and ecological risk assessment. CRAM defined an integrated health/ ecological risk assessment framework consisting of the four components: Hazard Identification, Exposure Assessment, Exposure-Response Assessment, and Risk Characterization. CRAM further provided recommendations on the scope of issues to be addressed in ecological risk assessment, critical research needs, and mechanisms for providing more detailed guidance on the scientific content of ecological risk assessments.  相似文献   

18.
Industrial societies have altered the earth's environment in ways that could have important, long-term ecological, economic, and health implications. In this paper, we examine the extent to which uncertainty about global climate change could impact the precision of predictions of secondary outcomes such as health impacts of pollution. Using a model that links global climate change with predictions of chemical exposure and human health risk in the Western region of the United States of America (U.S.), we define parameter variabilities and uncertainties and we characterize the resulting outcome variance. As a case study, we consider the public health consequences from releases of hexachlorobenzene (HCB), a ubiquitous multimedia pollutant. By constructing a matrix that links global environmental change both directly and indirectly to potential human-health effects attributable to HCB released into air, soil, and water, we define critical parameter variances in the health risk estimation process. We employ a combined uncertainty/sensitivity analysis to investigate how HCB releases are affected by increasing atmospheric temperature and the accompanying climate alterations that are anticipated. We examine how such uncertainty impacts both the expected magnitude and calculational precision of potential human exposures and health effects. This assessment reveals that uncertain temperature increases of up to 5°C have little impact on either the magnitude or precision of the public-health consequences estimated under existing climate variations for HCB released into air and water in the Western region of the U.S.  相似文献   

19.
Louis Anthony Cox  Jr. 《Risk analysis》2009,29(12):1664-1671
Do pollution emissions from livestock operations increase infant mortality rate (IMR)? A recent regression analysis of changes in IMR against changes in aggregate “animal units” (a weighted sum of cattle, pig, and poultry numbers) over time, for counties throughout the United States, suggested the provocative conclusion that they do: “[A] doubling of production leads to a 7.4% increase in infant mortality.” Yet, we find that regressing IMR changes against changes in specific components of “animal units” (cattle, pigs, and broilers) at the state level reveals statistically significant negative associations between changes in livestock production (especially, cattle production) and changes in IMR. We conclude that statistical associations between livestock variables and IMR variables are very sensitive to modeling choices (e.g., selection of explanatory variables, and use of specific animal types vs. aggregate “animal units). Such associations, whether positive or negative, do not warrant causal interpretation. We suggest that standard methods of quantitative risk assessment (QRA), including emissions release (source) models, fate and transport modeling, exposure assessment, and dose-response modeling, really are important—and indeed, perhaps, essential—for drawing valid causal inferences about health effects of exposures to guide sound, well-informed public health risk management policy. Reduced-form regression models, which skip most or all of these steps, can only quantify statistical associations (which may be due to model specification, variable selection, residual confounding, or other noncausal factors). Sound risk management requires the extra work needed to identify and model valid causal relations.  相似文献   

20.
Very little quantitative analysis is currently available on the cumulative effects of exposure to multiple hazardous agents that have either similar or different mechanisms of action. Over the past several years, efforts have been made to develop the methodologies for risk assessment of chemical mixtures, but mixed exposures to two or more dissimilar agents such as radiation and one or more chemical agents have not yet been addressed in any substantive way. This article reviews the current understanding of the health risks arising from mixed exposures to ionizing radiation and specific chemicals. Specifically discussed is how mixed radiation/chemical exposures, when evaluated in aggregation, were linked to chronic health endpoints such as cancer and intermediate health outcomes such as chromosomal aberrations. Also considered is the extent to which the current practices are consistent with the scientific understanding of the health risks associated with mixed-agent exposures. From this the discussion moves to the research needs for assessing the cumulative health risks from aggregate exposures to ionizing radiation and chemicals. The evaluation indicates that essentially no guidance has been provided for conducting risk assessment for two agents with different mechanisms of action (i.e., energy deposition from ionizing radiation versus DNA interactions with chemicals) but similar biological endpoints (i.e., chromosomal aberrations, mutations, and cancer). The literature review also reveals the problems caused by the absence of both the basic science and an appropriate evaluation framework for the combined effects of mixed-agent exposures. This makes it difficult to determine whether there is truly no interaction or somehow the interaction is masked by the scale of effect observation or inappropriate dose-response assumptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号