首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Prediction limits for Poisson distribution are useful in real life when predicting the occurrences of some phenomena, for example, the number of infections from a disease per year among school children, or the number of hospitalizations per year among patients with cardiovascular disease. In order to allocate the right resources and to estimate the associated cost, one would want to know the worst (i.e., an upper limit) and the best (i.e., the lower limit) scenarios. Under the Poisson distribution, we construct the optimal frequentist and Bayesian prediction limits, and assess frequentist properties of the Bayesian prediction limits. We show that Bayesian upper prediction limit derived from uniform prior distribution and Bayesian lower prediction limit derived from modified Jeffreys non informative prior coincide with their respective frequentist limits. This is not the case for the Bayesian lower prediction limit derived from a uniform prior and the Bayesian upper prediction limit derived from a modified Jeffreys prior distribution. Furthermore, it is shown that not all Bayesian prediction limits derived from a proper prior can be interpreted in a frequentist context. Using a counterexample, we state a sufficient condition and show that Bayesian prediction limits derived from proper priors satisfying our condition cannot be interpreted in a frequentist context. Analysis of simulated data and data on Atlantic tropical storm occurrences are presented.  相似文献   

2.
Truncated normal distributions are considered as prior distributions for the truncation parameter in truncated exponential models. Posterior istributions re obtained, and inferenceforthe truncation parameter and for the reliability function is discussed. One and two parameter models are considered.  相似文献   

3.
Some statistical data are most easily accessed in terms of record values. Examples include meteorology, hydrology and athletic events. Also, there are a number of industrial situations where experimental outcomes are a sequence of record-breaking observations. In this paper, Bayesian estimation for the two parameters of some life distributions, including Exponential, Weibull, Pareto and Burr type XII, are obtained based on upper record values. Prediction, either point or interval, for future upper record values is also presented from a Bayesian view point. Some of the non-Bayesian results can be achieved as limiting cases from our results. Numerical computations are given to illustrate the results.  相似文献   

4.
Based on multiply Type-II censored samples of sequential order statistics, Bayesian estimators are derived for the parameters of one- and two-parameter exponential distributions. In the one-parameter set-up, the posterior density is obtained under the assumption that the prior distribution is given by an inverse Gamma distribution, and the Bayes estimator with respect to squared error loss is calculated. Its performance is illustrated by a numerical example and compared with two non-Bayesian estimators, namely the BLUE and the approximate maximum likelihood estimator (AMLE). Moreover, prediction of future failure times is considered. Minimum risk equivariant estimators and predictors are deduced from the given results. Finally, similar results are presented for the two-parameter situation.  相似文献   

5.
6.
7.
In this paper we study certain properties of estimable and UMUV-estimable functions in a subfamily of the one-parameter exponential family of distributions for which there exists a sufficient and complete statistic following a Gamma distribution. These results are applied to the problem of estimation in the transformed chi-square family.  相似文献   

8.
Let X1, …, Xp be independent random variables, all having the same distribution up to a possibly varying unspecified parameter, where each of the p distributions belongs to the family of one parameter discrete exponential distributions. The problem is to estimate the unknown parameters simultaneously. Hudson (1978) shows that the minimum variance unbiased estimator (MVUE) of the parameters is inadmissible under squared error loss, and estimators better than the MVUE are proposed. Essentially, these estimators shrink the MVUE towards the origin. In this paper, we indicate that estimators shifting the MVUE towards a point different from the origin or a point determined by the observations can be obtained.  相似文献   

9.
The aim of this paper is to introduce an efficient Bayesian sampling procedure for exponential distribution with type-I censoring. An online inspection method is suggested to reach a Bayes decision prior the termination time of life test. Bayesian sampling plans (BSPs) with quadratic loss function are established to illustrate the use of the proposed method. Some BSPs are tabulated, and the performance of the proposed BSPs is compared with two existing competitive methods. Numerical results indicate that a significant reduction in the experimental time over the conventional BSP can be achieved when the online inspection method is applied.  相似文献   

10.
This paper considers Bayesian sampling plans for exponential distribution with random censoring. The efficient Bayesian sampling plan for a general loss function is derived. This sampling plan possesses the property that it may make decisions prior to the end of the life test experiment, and its decision function is the same as the Bayes decision function which makes decisions based on data collected at the end of the life test experiment. Compared with the optimal Bayesian sampling plan of Chen et al. (2004), the efficient Bayesian sampling plan has the smaller Bayes risk due to the less duration time of life test experiment. Computations of the efficient Bayes risks for the conjugate prior are given. Numerical comparisons between the proposed efficient Bayesian sampling plan and the optimal Bayesian sampling plan of Chen et al. (2004) under two special decision losses, including the quadratic decision loss, are provided. Numerical results also demonstrate that the performance of the proposed efficient sampling plan is superior to that of the optimal sampling plan by Chen et al. (2004).  相似文献   

11.
12.
This paper studies the problem of designing a curtailed Bayesian sampling plan (CBSP) with Type-II censored data. We first derive the Bayesian sampling plan (BSP) for exponential distributions based on Type-II censored samples in a general loss function. For the conjugate prior with quadratic loss function, an explicit expression for the Bayes decision function is derived. Using the property of monotonicity of the Bayes decision function, a new Bayesian sampling plan modified by the curtailment procedure, called a CBSP, is proposed. It is shown that the risk of CBSP is less than or equal to that of BSP. Comparisons among some existing BSPs and the proposed CBSP are given. Monte Carlo simulations are conducted, and numerical results indicate that the CBSP outperforms those early existing sampling plans if the time loss is considered in the loss function.  相似文献   

13.
We study variable sampling plans for exponential distributions based on type-I hybrid censored samples. For this problem, two sampling plans based on the non-failure sample proportion and the conditional maximum likelihood estimator are proposed by Chen et al. [J. Chen, W. Chou, H. Wu, and H. Zhou, Designing acceptance sampling schemes for life testing with mixed censoring, Naval Res. Logist. 51 (2004), pp. 597–612] and Lin et al. [C.-T. Lin, Y.-L. Huang, and N. Balakrishnan, Exact Bayesian variable sampling plans for the exponential distribution based on type-I and type-II censored samples, Commun. Statist. Simul. Comput. 37 (2008), pp. 1101–1116], respectively. From the theoretic decision point of view, the preceding two sampling plans are not optimal due to their decision functions not being the Bayes decision functions. In this article, we consider the decision theoretic approach, and the optimal Bayesian sampling plan based on sufficient statistics is derived under a general loss function. Furthermore, for the conjugate prior distribution, the closed-form formula of the Bayes decision rule can be obtained under either the linear or quadratic decision loss. The resulting Bayesian sampling plan has the minimum Bayes risk, and hence it is better than the sampling plans proposed by Chen et al. (2004) and Lin et al. (2008). Numerical comparisons are given and demonstrate that the performance of the proposed Bayesian sampling plan is superior to that of Chen et al. (2004) and Lin et al. (2008).  相似文献   

14.
This paper considers the multiple change-point estimation for exponential distribution with truncated and censored data by Gibbs sampling. After all the missing data of interest is filled in by some sampling methods such as rejection sampling method, the complete-data likelihood function is obtained. The full conditional distributions of all parameters are discussed. The means of Gibbs samples are taken as Bayesian estimations of the parameters. The implementation steps of Gibbs sampling are introduced in detail. Finally random simulation test is developed, and the results show that Bayesian estimations are fairly accurate.  相似文献   

15.
Bayesian analysis of a bivariate survival model based on exponential distributions is discussed using both vague and conjugate prior distributions. Parameter and reliability estimators are given for the maximum likelihood technique and the Bayesian approach using both types of priors. A Monte Carlo study indicates the vague prior Bayes estimator of reliability performs better than its maximum likelihood counterpart.  相似文献   

16.
This article describes a convenient method of selecting Metropolis– Hastings proposal distributions for multinomial logit models. There are two key ideas involved. The first is that multinomial logit models have a latent variable representation similar to that exploited by Albert and Chib (J Am Stat Assoc 88:669–679, 1993) for probit regression. Augmenting the latent variables replaces the multinomial logit likelihood function with the complete data likelihood for a linear model with extreme value errors. While no conjugate prior is available for this model, a least squares estimate of the parameters is easily obtained. The asymptotic sampling distribution of the least squares estimate is Gaussian with known variance. The second key idea in this paper is to generate a Metropolis–Hastings proposal distribution by conditioning on the estimator instead of the full data set. The resulting sampler has many of the benefits of so-called tailored or approximation Metropolis–Hastings samplers. However, because the proposal distributions are available in closed form they can be implemented without numerical methods for exploring the posterior distribution. The algorithm converges geometrically ergodically, its computational burden is minor, and it requires minimal user input. Improvements to the sampler’s mixing rate are investigated. The algorithm is also applied to partial credit models describing ordinal item response data from the 1998 National Assessment of Educational Progress. Its application to hierarchical models and Poisson regression are briefly discussed.  相似文献   

17.
The posterior distributions and the posterior bounds of the reliability functions have been derived for the one and twoparameter exponential distributions. Using Grubbs' (1971) data the posteriors are tabulated and plotted and their robustness studied  相似文献   

18.
19.
This article presents the statistical inferences on Weibull parameters with the data that are progressively type II censored. The maximum likelihood estimators are derived. For incorporation of previous information with current data, the Bayesian approach is considered. We obtain the Bayes estimators under squared error loss with a bivariate prior distribution, and derive the credible intervals for the parameters of Weibull distribution. Also, the Bayes prediction intervals for future observations are obtained in the one- and two-sample cases. The method is shown to be practical, although a computer program is required for its implementation. A numerical example is presented for illustration and some simulation study are performed.  相似文献   

20.
This paper deals with the Bayesian estimation of generalized exponential distribution in the proportional hazards model of random censorship under asymmetric loss functions. It is well known for the two-parameter lifetime distributions that the continuous conjugate priors for parameters do not exist; we assume independent gamma priors for the scale and the shape parameters. It is observed that the closed-form expressions for the Bayes estimators cannot be obtained; we propose Tierney–Kadane's approximation and Gibbs sampling to approximate the Bayes estimates. Monte Carlo simulation is carried out to observe the behavior of the proposed methods and one real data analysis is performed for illustration. Bayesian methods are compared with maximum likelihood and it is observed that the Bayes estimators perform better than the maximum-likelihood estimators in some cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号