首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of block effects makes the optimal selection of fractional factorial designs a difficult task. The existing frequentist methods try to combine treatment and block wordlength patterns and apply minimum aberration criterion to find the optimal design. However, ambiguities exist in combining the two wordlength patterns and therefore, the optimality of such designs can be challenged. Here we propose a Bayesian approach to overcome this problem. The main technique is to postulate a model and a prior distribution to satisfy the common assumptions in blocking and then, to develop an optimal design criterion for the efficient estimation of treatment effects. We apply our method to develop regular, nonregular, and mixed-level blocked designs. Several examples are presented to illustrate the advantages of the proposed method.  相似文献   

2.
The authors introduce the notion of split generalized wordlength pattern (GWP), i.e., treatment GWP and block GWP, for a blocked nonregular factorial design. They generalize the minimum aberration criterion to suit this type of design. Connections between factorial design theory and coding theory allow them to obtain combinatorial identities that govern the relationship between the split GWP of a blocked factorial design and that of its blocked consulting design. These identities work for regular and nonregular designs. Furthermore, the authors establish general rules for identifying generalized minimum aberration (GMA) blocked designs through their blocked consulting designs. Finally they tabulate and compare some GMA blocked designs from Hall's orthogonal array OA(16,215,2) of type III.  相似文献   

3.
This paper discusses the issue of choosing optimal designs when both blocking and foldover techniques are simultaneously employed to nonregular two-level fractional factorial designs. By using the indicator function, the treatment and block generalized wordlength patterns of the combined blocked design under a general foldover plan are defined. Some general properties of combined block designs are also obtained. Our results extend the findings of Ai et al. (2010) from regular designs to nonregular designs. Based on these theoretical results, a catalog of optimal blocking and foldover plans in terms of the generalized aberration criterion for nonregular initial design with 12, 16 and 20 runs is tabulated, respectively.  相似文献   

4.
In this paper, by introducing a concept of consulting design and based on the connection between factorial design theory and coding theory, we obtain combinatorial identities that relate the wordlength pattern of a regular mixed factorial design to that of its consulting design. According to these identities, we further-more establish the general and unified rules for identifying minimum aberration mixed factorial designs through their consulting designs. It is an improvement and generalization of the results in Mukerjee and Wu (2001). This paper is supported by NNSF of China grant No. 10171051 and RFDP grant No. 1999005512.  相似文献   

5.
There are two different systems of contrast parameterization when analyzing the interaction effects among the factors with more than two levels, i.e., linear-quadratic system and orthogonal components system. Based on the former system and an ANOVA model, Xu and Wu (2001) introduced the generalized wordlength pattern for general factorial designs. This paper shows that the generalized wordlength pattern exactly measures the balance pattern of interaction columns of a symmetrical design ground on the orthogonal components system, and thus an alternative angle to look at the generalized minimum aberration criterion is given. This work is partially supported by NNSF of China grant No. 10231030.  相似文献   

6.
In recent years there has been considerable attention paid to robust parameter design as a strategy for variance reduction. Of particular concern is the selection of a good experimental plan in light of the two different types of factors in the experiment (control and noise) and the asymmetric manner in which effects of the same order are treated. Recent work has focussed on the selection of regular fractional factorial designs in this setting. In this article, we consider the construction and selection of optimal non-regular experiment plans for robust parameter design. Our approach defines the word-length pattern for non-regular fractional factorial designs with two different types of factors which allows for the choice of optimal design to emphasize the estimation of the effects of interest. We use this new word-length pattern to rank non-regular robust parameter designs. We show that one can easily find minimum aberration robust parameter designs from existing orthogonal arrays. The methodology is demonstrated by finding optimal assignments for control and noise factors for 12, 16 and 20-run orthogonal arrays.  相似文献   

7.
The concept of minimum aberration has been extended to choose blocked fractional factorial designs (FFDs). The minimum aberration criterion ranks blocked FFDs according to their treatment and block wordlength patterns, which are often obtained by counting words in the treatment defining contrast subgroups and alias sets. When the number of factors is large, there are a huge number of words to be counted, causing some difficulties in computation. Based on coding theory, the concept of minimum moment aberration, proposed by Xu [Statist. Sinica, 13 (2003) 691–708] for unblocked FFDs, is extended to blocked FFDs. A method is then proposed for constructing minimum aberration blocked FFDs without using defining contrast subgroups and alias sets. Minimum aberration blocked FFDs for all 32 runs, 64 runs up to 32 factors, and all 81 runs are given with respect to three combined wordlength patterns.  相似文献   

8.
Fries and Hunter ( 1980 ) proposed the Minimum Aberration criterion (MA) for selecting regular designs. The regular designs with MA are msot commonly used because they are considered as the best designs. How ever, as pointed out by Chen, Sun and Wu ( 1993 ), there are situations that other designs may better meet the design need. Therefore, they catalogued some two-level and three-level fractional factorial regular designs with small (16,27,32,64) runs. For nonregular designs, such as the ones taken from Hadamard matrices, the MA criterion is not appUcable. Deng and Tang ( 1999 ) introduced Generalized Minimum Aberration Criterion (GMA) as a natural extension to the MA criterion. Similar to the case in the regular designs, other designs may better meet practical need, In this paper, we use the GMA criterion to give a catalogue of nonregular designs with smaU (16,20,24) runs.  相似文献   

9.
Defining equations are introduced in the context of two-level factorial designs and they are shown to provide a concise specification of both regular and nonregular designs. The equations are used to find orthogonal arrays of high strength and some optimal designs. The latter optimal designs are formed in a new way by augmenting notional orthogonal arrays which are allowed to have some runs with a negative number of replicates before augmentation. Defining equations are also shown to be useful when the factorial design is blocked.  相似文献   

10.
It is known that for blocked 2n-k2n-k designs a judicious sequencing of blocks may allow one to obtain early and insightful results regarding influential parameters in the experiment. Such findings may justify the early termination of the experiment thereby producing cost and time savings. This paper introduces an approach for selecting the optimal sequence of blocks for regular two-level blocked fractional factorial split-plot screening experiments. An optimality criterion is developed so as to give priority to the early estimation of low-order factorial effects. This criterion is then applied to the minimum aberration blocked fractional factorial split-plot designs tabled in McLeod and Brewster [2004. The design of blocked fractional factorial split-plot experiments. Technometrics 46, 135–146]. We provide a catalog of optimal block sequences for 16 and 32-run minimum aberration blocked fractional factorial split-plot designs run in either 4 or 8 blocks.  相似文献   

11.
It is well known that many industrial experiments have split‐plot structures. Compared to completely randomised experiments, split‐plot designs are more economical and thus have received much attention among researchers. Much work has been done for two‐level split‐plot designs. In this article, we consider split‐plot designs with factors of three, more than three, or mixed levels and with both qualitative and quantitative factors. We show that if two designs with both qualitative and quantitative factors are geometrically isomorphic, then their generalised wordlength patterns are identical. Three design scenarios are considered for optimal designs. The corresponding wordlength patterns are defined and the minimum aberration mixed‐level split‐plot designs having 18 and 36 runs are tabulated.  相似文献   

12.
Uniform designs are widely used in various scientific investigations and industrial applications. By considering all possible level permutation of the factors, a connection between average centered L2-discrepancy and generalized wordlength pattern for asymmetrical fractional factorial designs is derived. Moreover, we present new lower bounds to the average centered L2-discrepancy for symmetrical and asymmetrical U-type designs. For illustration of the theoretical results, the lower bounds for symmetrical and asymmetrical U-type designs are tabulated, and numerical results indicate that our lower bounds behave well and can be recommended for use in practice.  相似文献   

13.
Fractional factorial (FF) designs are no doubt the most widely used designs in experimental investigations due to their efficient use of experimental runs. One price we pay for using FF designs is, clearly, our inability to obtain estimates of some important effects (main effects or second order interactions) that are separate from estimates of other effects (usually higher order interactions). When the estimate of an effect also includes the influence of one or more other effects the effects are said to be aliased. Folding over an FF design is a method for breaking the links between aliased effects in a design. The question is, how do we define the foldover structure for asymmetric FF designs, whether regular or nonregular? How do we choose the optimal foldover plan? How do we use optimal foldover plans to construct combined designs which have better capability of estimating lower order effects? The main objective of the present paper is to provide answers to these questions. Using the new results in this paper as benchmarks, we can implement a powerful and efficient algorithm for finding optimal foldover plans which can be used to break links between aliased effects.  相似文献   

14.
Abstract

In this paper, we introduce the concept of model quality for two-level regular fractional factorial designs. Under the effect hierarchy principle, this paper raises the definition of model quality and introduces robust model-number pattern (RP) to choose the optimal robust design. Some theoretical results on this optimality and comparisons with GMC and MEC criterion are given.  相似文献   

15.
In this article, we consider experimental situations where a blocked regular two-level fractional factorial initial design is used. We investigate the use of the semi-fold technique as a follow-up strategy for de-aliasing effects that are confounded in the initial design as well as an alternative method for constructing blocked fractional factorial designs. A construction method is suggested based on the full foldover technique and sufficient conditions are obtained when the semi-fold yields as many estimable effects as the full foldover.  相似文献   

16.
Whole-plot (WP) factors and sub-plot (SP) factors play different roles in fractional factorial split-plot (FFSP) designs. In this paper, we consider FFSP designs with resolution III or IV from the viewpoint of clear factorial effects, classify two-factor interactions (2FIs) into three types, and give sufficient and necessary conditions for the existence of FFSP designs containing various clear factorial effects, including two types of main effects and three types of 2FIs. The structures of these designs are also shown and illustrated with examples.  相似文献   

17.
The generalized wordlength pattern (GWLP) introduced by Xu and Wu [2001. Generalized minimum aberration for asymmetrical fractional factorial designs. Ann. Statist. 29, 1066–1077] for an arbitrary fractional factorial design allows one to extend the use of the minimum aberration criterion to such designs. Ai and Zhang [2004. Projection justification of generalized minimum aberration for asymmetrical fractional factorial designs. Metrika 60, 279–285] defined the JJ-characteristics of a design and showed that they uniquely determine the design. While both the GWLP and the JJ-characteristics require indexing the levels of each factor by a cyclic group, we see that the definitions carry over with appropriate changes if instead one uses an arbitrary abelian group. This means that the original definitions rest on an arbitrary choice of group structure. We show that the GWLP of a design is independent of this choice, but that the JJ-characteristics are not. We briefly discuss some implications of these results.  相似文献   

18.
The confounding and aliasing scheme for fractional factorial split-plot designs with the units within each wholeplot arranged in rows and columns is described and illustrated. Isomorphism for this design type is described, together with a procedure which considers extensions of the concepts of wordlength patterns and letter patterns that can be used to test isomorphism between designs. Using in part this isomorphism testing procedure, a construction algorithm that may be used to obtain a complete set of such non-isomorphic two-level designs is described. Software based on this construction algorithm was used to obtain a complete set of non-isomorphic designs for up to five wholeplot factors, five subplot factors and up to 64 runs, which is presented as a table of designs. To aid the experimenter in distinguishing between competing designs, the estimation capacity sequence for each design is presented.  相似文献   

19.
Mixed-level designs have become widely used in the practical experiments. When the levels of some factors are difficult to be changed or controlled, fractional factorial split-plot (FFSP) designs are often used. It is highly to know when a mixed-level FFSP design with resolution III or IV has clear effects. This paper investigates the conditions of a resolution III or IV FFSP design with both two-level and four-level factors to have various clear factorial effects, including two types of main effects and three types of two-factor interaction components. The structures of such designs are shown and illustrated with examples.  相似文献   

20.
Use of the (M,S) criterion to select and classify factorial designs is proposed and studied. The criterion is easy to deal with computationally and it is independent of the choice of treatment contrasts. It can be applied to two-level designs as well as multi-level symmetrical and asymmetrical designs. An important connection between the (M,S) and minimum aberration criteria is derived for regular fractional factorial designs. Relations between the (M,S) criterion and generalized minimum aberration criteria on nonregular designs are also discussed. The (M,S) criterion is then applied to study the projective properties of some nonregular designs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号