首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Robust parameter design, originally proposed by Taguchi [System of Experimental Design, Vols. I and II, UNIPUB, New York, 1987], is an offline production technique for reducing variation and improving a product's quality by using product arrays. However, the use of the product arrays results in an exorbitant number of runs. To overcome this drawback, several scientists proposed the use of combined arrays, where the control and noise factors are combined in a single array. In this paper, we use non-isomorphic orthogonal arrays as combined arrays, in order to identify a model that contains all the main effects (control and noise), their control-by-noise interactions and their control-by-control interactions with high efficiency. Some cases where the control-by-control-noise are of interest are also considered.  相似文献   

2.
Robust parameter design, originally proposed by Taguchi ( 1987 ) is an offline production technique for reducing variation and improving product's quality To achieve this objective Taguchi proposed the use of product arrays. However. the product array approach, results in an exorbitant number of runs To overcome the drawbacks of the product array Welch, Wu, Kang and Sacks ( 1990 ), Shoemaker, Tsui and Wu ( 1991 ) and Montgomery ( 1991a ) proposed the use of combined arrays, where the control factors and noise factors are combined in a single array. In this paper we study the concept of combined array for an intermediate class of designs where n = 1 (mod4), n = 2 (mod4) and n = 3 (mod4). The designs presented in this paper, though not orthogonal, offer a great reduction in the run-size.  相似文献   

3.
SUMMARY The combined array provides a powerful, more statistically rigorous alternative to Taguchi's crossed-array approach to robust parameter design. The combined array assumes a single linear model in the control and the noise factors. One may then find conditions for the control factors which will minimize an appropriate loss function that involves the noise factors. The most appropriate loss function is often simply the resulting process variance, recognizing that the noise factors are actually random effects in the process. Because the major focus of such an experiment is to optimize the estimated process variance, it is vital to understand the resulting prediction properties. This paper develops the mean squared error for the estimated process variance for the combined array approach, under the assumption that the model is correctly specified. Specific combined arrays are compared for robustness. A practical example outlines how this approach may be used to select appropriate combined arrays within a particular experimental situation.  相似文献   

4.
Genichi Taguchi has emphasized the use of designed experiments in several novel and important applications. In this paper we focus on the use of statistical experimental designs in designingproducts to be robust to environmental conditions. The engineering concept of robust product design is very important because it is frequently impossible or prohibitively expensive to control or eliminate variation resulting from environmental conditions. Robust product design enablesthe experimenter to discover how to modify the design of the product to minimize the effect dueto variation from environmental sources. In experiments of this kind, Taguchi's total experimental arrangement consists of a cross-product of two experimental designs:an inner array containing the design factors and an outer array containing the environmental factors. Except in situations where both these arrays are small, this arrangement may involve a prohibitively large amount of experimental work. One of the objectives of this paper is to show how this amount of work can be reduced. In this paper we investigate the applicability of split-plot designs for thisparticular experimental situation. Consideration of the efficiency of split-plot designs and anexamination of several variants of split-plot designs indicates that experiments conductedin a split-plot mode can be of tremendous value in robust product design since they not only enable the contrasts of interest to be estimated efficiently but also the experiments can be considerably easier to conduct than the designs proposed by Taguchi.  相似文献   

5.
In robust parameter design, a compound noise experiment has been frequently used for reducing the number of experimental runs compared to a product array experiment. However, the results obtained by the compound noise experiment and the product array experiment are often much different. This paper derives an expression of the correlation coefficient of response variances in the compound noise and the product array experiments, which gives an explanation of that difference.  相似文献   

6.
In recent years there has been considerable attention paid to robust parameter design as a strategy for variance reduction. Of particular concern is the selection of a good experimental plan in light of the two different types of factors in the experiment (control and noise) and the asymmetric manner in which effects of the same order are treated. Recent work has focussed on the selection of regular fractional factorial designs in this setting. In this article, we consider the construction and selection of optimal non-regular experiment plans for robust parameter design. Our approach defines the word-length pattern for non-regular fractional factorial designs with two different types of factors which allows for the choice of optimal design to emphasize the estimation of the effects of interest. We use this new word-length pattern to rank non-regular robust parameter designs. We show that one can easily find minimum aberration robust parameter designs from existing orthogonal arrays. The methodology is demonstrated by finding optimal assignments for control and noise factors for 12, 16 and 20-run orthogonal arrays.  相似文献   

7.
Robust parameter design methodology was originally introduced by Taguchi [14 Taguchi, G. 1986. Introduction to Quality Engineering: Designing Quality Into Products and Process, Tokyo: Asian Productivity Organization.  [Google Scholar]] as an engineering methodology for quality improvement of products and processes. A robust design of a system is one in which two different types of factors are varied; control factors and noise factors. Control factors are variables with levels that are adjustable, whereas noise factors are variables with levels that are hard or impossible to control during normal conditions, such as environmental conditions and raw-material properties. Robust parameter design aims at the reduction of process variation by properly selecting the levels of control factors so that the process becomes insensitive to changes in noise factors. Taguchi [14 Taguchi, G. 1986. Introduction to Quality Engineering: Designing Quality Into Products and Process, Tokyo: Asian Productivity Organization.  [Google Scholar] 15 Taguchi, G. 1987. System of Experimental Design, Vol. I and II, New York: UNIPUB.  [Google Scholar]] proposed the use of crossed arrays (inner–outer arrays) for robust parameter design. A crossed array is the cross-product of an orthogonal array (OA) involving control factors (inner array) and an OA involving noise factors (outer array). Objecting to the run size and the flexibility of crossed arrays, several authors combined control and noise factors in a single design matrix, which is called a combined array, instead of crossed arrays. In this framework, we present the use of OAs in Taguchi's methodology as a useful tool for designing robust parameter designs with economical run size.  相似文献   

8.
The Box-Jenkins method is a popular and important technique for modeling and forecasting of time series. Unfortunately the problem of determining the appropriate ARMA forecasting model (or indeed if an ARMA model holds) is a major drawback to the use of the Box-Jenkins methodology. Gray et al. (1978) and Woodward and Gray (1979) have proposed methods of estimating p and qin ARMA modeling based on the R and Sarrays that circumvent some of these modeling difficulties.

In this paper we generalize the R and S arrays by showing a relationship to Padé approximunts and then show that these arrays have a much wider application than in just determining model order. Particular non-ARMA models can be identified as well. This includes certain processes that consist of deterministic functions plus ARMA noise, indeed we believe that the combined R and S arrays are the best overall tool so fur developed for the identification of general 2nd order (not just stationary) time scries models.  相似文献   

9.
The objective of Taguchi's robust design method is to reduce the output variation from the target (the desired output) by making the performance insensitive to noise, such as manufacturing imperfections, environmental variations and deterioration. This objective has been recognized to be very effective in improving product and manufacturing process design. In application, however, Taguchi's analysis approach of modelling the average loss (or signal-to-noise ratios) may lead to non-optimal solutions, efficiency loss and information loss. In addition, since his modelling loss approach requires a special experimental format that contains a cross-product of two separate arrays for control and noise factors, this leads to less flexible and unnecessarily expensive experiments. The response model approach, an alternative approach proposed by Welch et al. , Box and Jones, Lucas and Shoemaker et al. , does not have these problems. However, this alternative approach also has its own problems. This paper reviews and discusses the potential problems of Taguchi's modelling approach. We illustrate these problems with examples and numerical studies. We also compare the advantages and disadvantages of Taguchi's approach and the alternative approach.  相似文献   

10.
Taguchi's robust design technique, also known as parameter design, focuses on making product and process designs insensitive (i.e., robust) to hard to control variations. In some applications, however, his approach of modeling expected loss and the resulting “product array” experimental format leads to unnecessarily expensive and less informative experiments. The response model approach to robust design proposed by Welch, Ku, Yang, and Sacks (1990), Box and Jones (1990), Lucas (1989), and Shoemaker, Tsui and Wu (1991) offers more flexibility and economy in experiment planning and more informative modeling. This paper develops a formal basis for the graphical data-analytic approach presented in Shoemaker et al. In particular, we decompose overall response variation into components representing the variability contributed by each noise factor, and show when this decomposition allows us to use individual control-by-noise interaction plots to minimize response variation. We then generalize the control-by-noise interaction plots to extend their usefulness, and develop a formal analysis strategy using these plots to minimize response variation.  相似文献   

11.
The use of optimal orthogonal array latin hypercube designs is proposed. Orthogonal arrays were proposed for constructing latin hypercube designs by Tang (1993). Such designs generally have better space filling properties than random latin hypercube designs. Even so, these designs do not necessarily fill the space particularly well. As a result, we consider orthogonal-array-based latin hypercube designs that try to achieve optimality in some sense. Optimization is performed by adapting strategies found in Morris & Mitchell (1995) and Ye et al. (2000). The strategies here search only orthogonal-array-based latin hypercube designs and, as a result, optimal designs are found in a more efficient fashion. The designs found are in general agreement with existing optimal designs reported elsewhere.  相似文献   

12.
The two experimental methods most commonly used for reducing the effect of noise factors on a response of interest Y aim either to estimate a model of the variability (V(Y), or an associated function), that is transmitted by the noise factors, or to estimate a model of the ratio between the response (Y) and all the control and noise factors involved therein. Both methods aim to determine which control factor conditions minimise the noise factors' effect on the response of interest, and a series of analytical guidelines are established to reach this end. Product array designs allow robustness problems to be solved in both ways, but require a large number of experiments. Thus, practitioners tend to choose more economical designs that only allow them to model the surface response for Y. The general assumption is that both methods would lead to similar conclusions. In this article we present a case that utilises a design based on a product design and for which the conclusions yielded by the two analytical methods are quite different. This example casts doubt on the guidelines that experimental practice follows when using either of the two methods. Based on this example, we show the causes behind these discrepancies and we propose a number of guidelines to help researchers in the design and interpretation of robustness problems when using either of the two methods.  相似文献   

13.
Illumina BeadArrays are becoming an increasingly popular Microarray platform due to its high data quality and relatively low cost. One distinct feature of Illumina BeadArrays is that each array has thousands of negative control bead types containing oligonucleotide sequences that are not specific to any target genes in the genome. This design provides a way of directly estimating the distribution of the background noise. In the literature of background correction for BeadArray data, the information from negative control beads is either ignored, used in a naive way that can lead to a loss in efficiency, or the noise is assumed to be normally distributed. However, we show with real data that the noise can be skewed. In this study, we propose an exponential-gamma convolution model for background correction of Illumina BeadArray data. Using both simulated and real data examples, we show that the proposed method can improve the signal estimation and detection of differentially expressed genes when the signal to noise ratio is large and the noise has a skewed distribution.  相似文献   

14.
This paper considers the use of orthogonal arrays of strength two as experimental designs for fitting a surrogate model. Contrary to standard space-filling designs or Latin hypercube designs, the points of an orthogonal array of strength two are well distributed when they are projected on the two-dimensional faces of the unit cube. The aim is to determine if this property allows one to fit an accurate surrogate model when the computer response is governed by second-order interactions of some input variables. The first part of the paper is devoted to the construction of orthogonal arrays with space-filling properties. In the second part, orthogonal arrays are compared with standard designs for fitting a Gaussian process model.  相似文献   

15.
A method of constructing a resolvable orthogonal array (4λk2,2) which can be partitioned into λ orthogonal arrays (4,k 2,1) is proposed. The number of constraints kfor this type of orthogonal array is at most 3λ. When λ=2 or a multiple of 4, an orthogonal array with the maximum number of constraints of 3λ can be constructed. When λ=4n+2(n≧1) an orthogonal array with 2λ+2 constraints can be constructed. When λ is an odd number, orthogonal arrays can be constructed for λ=3,5,7, and 9 with k=4,8,12, and 13 respectively.  相似文献   

16.
The analysis of designs based on saturated orthogonal arrays poses a very difficult challenge since there are no degrees of freedom left to estimate the error variance. In this paper we propose a heuristic approach for the use of cumulative sum control chart for screening active effects in orthogonal-saturated experiments. A comparative simulation study establishes the powerfulness of the proposed method.  相似文献   

17.
When orthogonal arrays are used in practical applications, it is often difficult to perform all the designed runs of the experiment under homogeneous conditions. The arrangement of factorial runs into blocks is usually an action taken to overcome such obstacles. However, an arbitrary configuration might lead to spurious analysis results. In this work, the nice properties of two-level orthogonal arrays are taken into consideration and an effective method for arranging experimental runs into two and four blocks of the same size is proposed. This method is based on the so-called J-characteristics of the corresponding array. General theoretical results are given for studying up to four experimental factors in two blocks, as well as for studying up to three experimental factors in four blocks. Finally, we provide best blocking arrangements when the number of the factors of interest is larger, by exploiting the known lists of non-isomorphic orthogonal arrays with two levels and various run sizes.  相似文献   

18.
Search designs are considered for searching and estimating one nonzero interaction from the two and three factor interactions under the search linear model. We compare three 12-run search designs D1, D2, and D3, and three 11-run search designs D4, D5, and D6, for a 24 factorial experiment. Designs D2 and D3 are orthogonal arrays of strength 2, D1 and D4 are balanced arrays of full strength, D5 is a balanced array of strength 2, and D6 is obtained from D3 by deleting the duplicate run. Designs D4 and D5 are also obtained by deleting a run from D1 and D2, respectively. Balanced arrays and orthogonal arrays are commonly used factorial designs in scientific experiments. “Search probabilities” are calculated for the comparison of search designs. Three criteria based on search probabilities are presented to determine the design which is most likely to identify the nonzero interaction. The calculation of these search probabilities depends on an unknown parameter ρ which has a signal-to-noise ratio form. For a given value of ρ, Criteria I and II are newly proposed in this paper and Criteria III is given in Shirakura et al. (Ann. Statist. 24 (6) (1996) 2560). We generalize Criteria I–III for all values of ρ so that the comparison of search designs can be made without requiring a specific value of ρ. We have developed simplified methods for comparing designs under these three criteria for all values of ρ. We demonstrate, under all three criteria, that the balanced array D1 is more likely to identify the nonzero interaction than the orthogonal arrays D2 and D3, and the design D4 is more likely to identify the nonzero interaction than the designs D5 and D6.The methods of comparing designs developed in this paper are applicable to other factorial experiments for searching one nonzero interaction of any order.  相似文献   

19.
We establish a strong invariance principle for triangular arrays of a broad class of weakly dependent real random variables. We approximate the original array of dependent random variables by an array of rowwise independent standard normal variables. We demonstrate the functional central limit theorem and law of the iterated logarithm for the approximating array and thereby extend these results to the original array. Among several examples, we look at arrays used in describing the rate of convergence of estimators in regression analysis.  相似文献   

20.
An integrated process control (IPC) procedure is a scheme which combines the engineering process control (EPC) and the statistical process control (SPC) procedures for the process where the noise and a special cause are present. The most efficient way of reducing the effect of the noise is to adjust the process by its forecast, which is done by the EPC procedure. The special cause, which produces significant deviations of the process level from the target, can be detected by the monitoring scheme, which is done by the SPC procedure. The effects of special causes can be eliminated by a rectifying action. The performance of the IPC procedure is evaluated in terms of the average run length (ARL) or the expected cost per unit time (ECU). In designing the IPC procedure for practical use, it is essential to derive its properties constituting the ARL or ECU based on the proposed process model. The process is usually assumed as it starts only with noise, and special causes occur at random times afterwards. The special cause is assumed to change the mean as well as all the parameters of the in-control model. The linear filter models for the process level as well as the controller and the observed deviations for the IPC procedure are developed here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号