首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Change point estimation procedures simplify the efforts to search for and identify special causes in multivariate statistical process monitoring. After a signal is generated by the simultaneously used control charts or a single control chart, add-on change point procedure estimates the time of the change. In this study, multivariate joint change point estimation performance for simultaneous monitoring of both location and dispersion is compared under the assumption that various single charts are used to monitor the process. The change detection performance for several structural changes for the mean vector and covariance matrix is also discussed. It is concluded that choice of the control chart to obtain a signal may affect the change point detection performance.  相似文献   

2.
Structured means have been used in studying possible covariate effects on responses, whereas patterned covariances deal with random effects, missing data, and differing study designs. In this article, we develop new multivariate models with patterned means and covariance matrices to deal with special structures of the post-mortem brain tissue data collected in the Conte Center for the Neuroscience of Mental Disorders at the University of Pittsburgh. We obtain maximum likelihood estimates via the method of scoring for these new structured models. One-iteration estimators from a consistent starting point are used to derive the asymptotic distributions. The model fitting algorithms, as well as the asymptotic distributions, are examined using simulated data, and are applied to data from post-mortem tissue studies in schizophrenia.  相似文献   

3.
We investigate mixed analysis of covariance models for the 'one-step' assessment of conditional QT prolongation. Initially, we consider three different covariance structures for the data, where between-treatment covariance of repeated measures is modelled respectively through random effects, random coefficients, and through a combination of random effects and random coefficients. In all three of those models, an unstructured covariance pattern is used to model within-treatment covariance. In a fourth model, proposed earlier in the literature, between-treatment covariance is modelled through random coefficients but the residuals are assumed to be independent identically distributed (i.i.d.). Finally, we consider a mixed model with saturated covariance structure. We investigate the precision and robustness of those models by fitting them to a large group of real data sets from thorough QT studies. Our findings suggest: (i) Point estimates of treatment contrasts from all five models are similar. (ii) The random coefficients model with i.i.d. residuals is not robust; the model potentially leads to both under- and overestimation of standard errors of treatment contrasts and therefore cannot be recommended for the analysis of conditional QT prolongation. (iii) The combined random effects/random coefficients model does not always converge; in the cases where it converges, its precision is generally inferior to the other models considered. (iv) Both the random effects and the random coefficients model are robust. (v) The random effects, the random coefficients, and the saturated model have similar precision and all three models are suitable for the one-step assessment of conditional QT prolongation.  相似文献   

4.
Gaussian random fields whose covariance structures are described by a power law model provide a simple and flexible class of models for isotropic random fields. This class includes fractional Brownian fields as a special case. Because these random fields are nonstationary, the extensive results available on equivalence of Gaussian measures for stationary models do not apply to them. This work shows that results on equivalence for two stationary Gaussian random field models extend in a natural way to the equivalence of a stationary model and a power law model. This result is used to show that if we use a power law model for predicting a random field at unobserved locations when in fact the random field is stationary, we can obtain asymptotically optimal predictions as long as the high frequency behavior of the true spectral density is sufficiently close to the high frequency behavior of the spectral density of the power law model.  相似文献   

5.
By analyzing a special class of regression problems we point out that previously suggested estimates of the covariance matrix of regression M-cstimatos are inadequate for certain design matrices. These results confirm the conclusions drawn in several Monte Cailo studies.  相似文献   

6.
Predictive criteria, including the adjusted squared multiple correlation coefficient, the adjusted concordance correlation coefficient, and the predictive error sum of squares, are available for model selection in the linear mixed model. These criteria all involve some sort of comparison of observed values and predicted values, adjusted for the complexity of the model. The predicted values can be conditional on the random effects or marginal, i.e., based on averages over the random effects. These criteria have not been investigated for model selection success.

We used simulations to investigate selection success rates for several versions of these predictive criteria as well as several versions of Akaike's information criterion and the Bayesian information criterion, and the pseudo F-test. The simulations involved the simple scenario of selection of a fixed parameter when the covariance structure is known.

Several variance–covariance structures were used. For compound symmetry structures, higher success rates for the predictive criteria were obtained when marginal rather than conditional predicted values were used. Information criteria had higher success rates when a certain term (normally left out in SAS MIXED computations) was included in the criteria. Various penalty functions were used in the information criteria, but these had little effect on success rates. The pseudo F-test performed as expected. For the autoregressive with random effects structure, the results were the same except that success rates were higher for the conditional version of the predictive error sum of squares.

Characteristics of the data, such as the covariance structure, parameter values, and sample size, greatly impacted performance of various model selection criteria. No one criterion was consistently better than the others.  相似文献   

7.
Two types of bivariate models for categorical response variables are introduced to deal with special categories such as ‘unsure’ or ‘unknown’ in combination with other ordinal categories, while taking additional hierarchical data structures into account. The latter is achieved by the use of different covariance structures for a trivariate random effect. The models are applied to data from the INSIDA survey, where interest goes to the effect of covariates on the association between HIV risk perception (quadrinomial with an ‘unknown risk’ category) and HIV infection status (binary). The final model combines continuation-ratio with cumulative link logits for the risk perception, together with partly correlated and partly shared trivariate random effects for the household level. The results indicate that only age has a significant effect on the association between HIV risk perception and infection status. The proposed models may be useful in various fields of application such as social and biomedical sciences, epidemiology and public health.  相似文献   

8.
Maximum likelihood estimation under constraints for estimation in the Wishart class of distributions, is considered. It provides a unified approach to estimation in a variety of problems concerning covariance matrices. Virtually all covariance structures can be translated to constraints on the covariances. This includes covariance matrices with given structure such as linearly patterned covariance matrices, covariance matrices with zeros, independent covariance matrices and structurally dependent covariance matrices. The methodology followed in this paper provides a useful and simple approach to directly obtain the exact maximum likelihood estimates. These maximum likelihood estimates are obtained via an estimation procedure for the exponential class using constraints.  相似文献   

9.
Efficient estimation of the regression coefficients in longitudinal data analysis requires a correct specification of the covariance structure. If misspecification occurs, it may lead to inefficient or biased estimators of parameters in the mean. One of the most commonly used methods for handling the covariance matrix is based on simultaneous modeling of the Cholesky decomposition. Therefore, in this paper, we reparameterize covariance structures in longitudinal data analysis through the modified Cholesky decomposition of itself. Based on this modified Cholesky decomposition, the within-subject covariance matrix is decomposed into a unit lower triangular matrix involving moving average coefficients and a diagonal matrix involving innovation variances, which are modeled as linear functions of covariates. Then, we propose a fully Bayesian inference for joint mean and covariance models based on this decomposition. A computational efficient Markov chain Monte Carlo method which combines the Gibbs sampler and Metropolis–Hastings algorithm is implemented to simultaneously obtain the Bayesian estimates of unknown parameters, as well as their standard deviation estimates. Finally, several simulation studies and a real example are presented to illustrate the proposed methodology.  相似文献   

10.
Application of ordinary least-squares regression to data sets which contain multiple measurements from individual sampling units produces an unbiased estimator of the parameters but a biased estimator of the covariance matrix of the parameter estimates. The present work considers a random coefficient, linear model to deal with such data sets: this model permits many senses in which multiple measurements are taken from a sampling unit, not just when it is measured at several times. Three procedures to estimate the covariance matrix of the error term of the model are considered. Given these, three procedures to estimate the parameters of the model and their covariance matrix are considered; these are ordinary least-squares, generalized least-squares, and an adjusted ordinary least-squares procedure which produces an unbiased estimator of the covariance matrix of the parameters with small samples. These various procedures are compared in simulation studies using three examples from the biological literature. The possibility of testing hypotheses about the vector of parameters is also considered. It is found that all three procedures for regression estimation produce estimators of the parameters with bias of no practical consequence, Both generalized least-squares and adjusted ordinary least-squares generally produce estimators of the covariance matrix of the parameter estimates with bias of no practical consequence, while ordinary least-squares produces a negatively biased estimator. Neither ordinary nor generalized least-squares provide satisfactory hypothesis tests of the vector of parameter estimates. It is concluded that adjusted ordinary least-squares, when applied with either of two of the procedures used to estimate the error coveriance matrix, shows promise for practical application with data sets of the nature considered here.  相似文献   

11.
Abstract

When the elements of a random vector take any real values, formulas of product moments are obtained for continuous and discrete random variables using distribution/survival functions. The random product can be that of strictly increasing functions of random variables. For continuous cases, the derivation based on iterated integrals is employed. It is shown that Hoeffding’s covariance lemma is algebraically equal to a special case of this result. For discrete cases, the elements of a random vector can be non-integers and/or unequally spaced. A discrete version of Hoeffding’s covariance lemma is derived for real-valued random variables.  相似文献   

12.
We study the spatial optimal sampling design for covariance parameter estimation. The spatial process is modeled as a Gaussian random field and maximum likelihood (ML) is used to estimate the covariance parameters. We use the log determinant of the inverse Fisher information matrix as the design criterion and run simulations to investigate the relationship between the inverse Fisher information matrix and the covariance matrix of the ML estimates. A simulated annealing algorithm is developed to search for an optimal design among all possible designs on a fine grid. Since the design criterion depends on the unknown parameters, we define relative efficiency of a design and consider minimax and Bayesian criteria to find designs that are robust for a range of parameter values. Simulation results are presented for the Matérn class of covariance functions.  相似文献   

13.
We characterize the general nonnegative-definite and positive-definite joint observation covariance structures for the two-group case such that the two sample mean vectors are independent of the two corresponding sample covariance matrices. Also, the sample covariance matrices are distributed as independent noncentral or central Wishart random matrices. We derive and utilize a representation of the general common non-negative-definite solution to a particular system of matrix equations with idempotent coefficient matrices.  相似文献   

14.
We often rely on the likelihood to obtain estimates of regression parameters but it is not readily available for generalized linear mixed models (GLMMs). Inferences for the regression coefficients and the covariance parameters are key in these models. We presented alternative approaches for analyzing binary data from a hierarchical structure that do not rely on any distributional assumptions: a generalized quasi-likelihood (GQL) approach and a generalized method of moments (GMM) approach. These are alternative approaches to the typical maximum-likelihood approximation approach in Statistical Analysis System (SAS) such as Laplace approximation (LAP). We examined and compared the performance of GQL and GMM approaches with multiple random effects to the LAP approach as used in PROC GLIMMIX, SAS. The GQL approach tends to produce unbiased estimates, whereas the LAP approach can lead to highly biased estimates for certain scenarios. The GQL approach produces more accurate estimates on both the regression coefficients and the covariance parameters with smaller standard errors as compared to the GMM approach. We found that both GQL and GMM approaches are less likely to result in non-convergence as opposed to the LAP approach. A simulation study was conducted and a numerical example was presented for illustrative purposes.  相似文献   

15.
Summary Moments and distributions of quadratic forms or quadratic expressions in normal variables are available in literature. Such quadratic expressions are shown to be equivalent to a linear function of independent central or noncentral chi-square variables. Some results on linear functions of generalized quadratic forms are also available in literature. Here we consider an arbitrary linear function of matrix-variate gamma variables. Moments of the determinant of such a linear function are evaluated when the matrix-variate gammas are independently distributed. By using these results, arbitrary non-null moments as well as the non-null distribution of the likelihood ratio criterion for testing the hypothesis of equality of covariance matrices in independent multivariate normal populations are derived. As a related result, the distribution of a linear function of independent matrix-variate gamma random variables, which includes linear functions of independent Wishart matrices, is also obtained. Some properties of generalized special functions of several matrix arguments are used in deriving these results.  相似文献   

16.
This paper considers the estimation of multivariate random effects that are measured with error, but for which there are no replications. Using structural simplification of the correlation of the data, separate estimates are generated for the covariance of the random effects and the covariance of the error. An estimator of the random effects based on a truncated eigen structure is defined, and matrix mean squared error and its trace (risk) are analyzed, with comparison to the maximum likelihood estimator (m.l.e) and also to the Stein-like estimator of Efron and Morris (1972). It is shown that the estimator has risk which is smaller than the risk of the maximum likelihood estimator and the Efron-Morris estimator in most cases.  相似文献   

17.
For two or more multivariate distributions with common covariance matrix, test statistics for certain special structures of the common covariance matrix are presented when the dimension of the multivariate vectors may exceed the number of such vectors. The test statistics are constructed as functions of location‐invariant estimators defined as U‐statistics, and the corresponding asymptotic theory is used to derive the limiting distributions of the proposed tests. The properties of the test statistics are established under mild and practical assumptions, and the same are numerically demonstrated using simulation results with small or moderate sample sizes and large dimensions.  相似文献   

18.
The maximum likelihood equations for a multivariate normal model with structured mean and structured covariance matrix may not have an explicit solution. In some cases the model's error term may be decomposed as the sum of two independent error terms, each having a patterned covariance matrix, such that if one of the unobservable error terms is artificially treated as "missing data", the EM algorithm can be used to compute the maximum likelihood estimates for the original problem. Some decompositions produce likelihood equations which do not have an explicit solution at each iteration of the EM algorithm, but within-iteration explicit solutions are shown for two general classes of models including covariance component models used for analysis of longitudinal data.  相似文献   

19.
Complex dependency structures are often conditionally modeled, where random effects parameters are used to specify the natural heterogeneity in the population. When interest is focused on the dependency structure, inferences can be made from a complex covariance matrix using a marginal modeling approach. In this marginal modeling framework, testing covariance parameters is not a boundary problem. Bayesian tests on covariance parameter(s) of the compound symmetry structure are proposed assuming multivariate normally distributed observations. Innovative proper prior distributions are introduced for the covariance components such that the positive definiteness of the (compound symmetry) covariance matrix is ensured. Furthermore, it is shown that the proposed priors on the covariance parameters lead to a balanced Bayes factor, in case of testing an inequality constrained hypothesis. As an illustration, the proposed Bayes factor is used for testing (non-)invariant intra-class correlations across different group types (public and Catholic schools), using the 1982 High School and Beyond survey data.  相似文献   

20.
The signal issued by a control chart triggers the process professionals to investigate the special cause. Change point methods simplify the efforts to search for and identify the special cause. In this study, using maximum likelihood estimation, a multivariate joint change point estimation procedure for monitoring both location and dispersion simultaneously is proposed. After a signal is generated by the simultaneously used Hotelling's T 2 and/or generalized variance control charts, the procedure starts detecting the time of the change. The performance of the proposed method for several structural changes for the mean vector and covariance matrix is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号