首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Imputation is often used in surveys to treat item nonresponse. It is well known that treating the imputed values as observed values may lead to substantial underestimation of the variance of the point estimators. To overcome the problem, a number of variance estimation methods have been proposed in the literature, including resampling methods such as the jackknife and the bootstrap. In this paper, we consider the problem of doubly robust inference in the presence of imputed survey data. In the doubly robust literature, point estimation has been the main focus. In this paper, using the reverse framework for variance estimation, we derive doubly robust linearization variance estimators in the case of deterministic and random regression imputation within imputation classes. Also, we study the properties of several jackknife variance estimators under both negligible and nonnegligible sampling fractions. A limited simulation study investigates the performance of various variance estimators in terms of relative bias and relative stability. Finally, the asymptotic normality of imputed estimators is established for stratified multistage designs under both deterministic and random regression imputation. The Canadian Journal of Statistics 40: 259–281; 2012 © 2012 Statistical Society of Canada  相似文献   

2.
This study investigated the bias of factor loadings obtained from incomplete questionnaire data with imputed scores. Three models were used to generate discrete ordered rating scale data typical of questionnaires, also known as Likert data. These methods were the multidimensional polytomous latent trait model, a normal ogive item response theory model, and the discretized normal model. Incomplete data due to nonresponse were simulated using either missing completely at random or not missing at random mechanisms. Subsequently, for each incomplete data matrix, four imputation methods were applied for imputing item scores. Based on a completely crossed six-factor design, it was concluded that in general, bias was small for all data simulation methods and all imputation methods, and under all nonresponse mechanisms. Imputation method, two-way-plus-error, had the smallest bias in the factor loadings. Bias based on the discretized normal model was greater than that based on the other two models.  相似文献   

3.
Resampling methods are a common measure to estimate the variance of a statistic of interest when data consist of nonresponse and imputation is used as compensation. Applying resampling methods usually means that subsamples are drawn from the original sample and that variance estimates are computed based on point estimators of several subsamples. However, newer resampling methods such as the rescaling bootstrap of Chipperfield and Preston [Efficient bootstrap for business surveys. Surv Methodol. 2007;33:167–172] include all elements of the original sample in the computation of its point estimator. Thus, procedures to consider imputation in resampling methods cannot be applied in the ordinary way. For such methods, modifications are necessary. This paper presents an approach applying newer resampling methods for imputed data. The Monte Carlo simulation study conducted in the paper shows that the proposed approach leads to reliable variance estimates in contrast to other modifications.  相似文献   

4.
This article examines methods to efficiently estimate the mean response in a linear model with an unknown error distribution under the assumption that the responses are missing at random. We show how the asymptotic variance is affected by the estimator of the regression parameter, and by the imputation method. To estimate the regression parameter, the ordinary least squares is efficient only if the error distribution happens to be normal. If the errors are not normal, then we propose a one step improvement estimator or a maximum empirical likelihood estimator to efficiently estimate the parameter.To investigate the imputation’s impact on the estimation of the mean response, we compare the listwise deletion method and the propensity score method (which do not use imputation at all), and two imputation methods. We demonstrate that listwise deletion and the propensity score method are inefficient. Partial imputation, where only the missing responses are imputed, is compared to full imputation, where both missing and non-missing responses are imputed. Our results reveal that, in general, full imputation is better than partial imputation. However, when the regression parameter is estimated very poorly, the partial imputation will outperform full imputation. The efficient estimator for the mean response is the full imputation estimator that utilizes an efficient estimator of the parameter.  相似文献   

5.
Donor imputation is frequently used in surveys. However, very few variance estimation methods that take into account donor imputation have been developed in the literature. This is particularly true for surveys with high sampling fractions using nearest donor imputation, often called nearest‐neighbour imputation. In this paper, the authors develop a variance estimator for donor imputation based on the assumption that the imputed estimator of a domain total is approximately unbiased under an imputation model; that is, a model for the variable requiring imputation. Their variance estimator is valid, irrespective of the magnitude of the sampling fractions and the complexity of the donor imputation method, provided that the imputation model mean and variance are accurately estimated. They evaluate its performance in a simulation study and show that nonparametric estimation of the model mean and variance via smoothing splines brings robustness with respect to imputation model misspecifications. They also apply their variance estimator to real survey data when nearest‐neighbour imputation has been used to fill in the missing values. The Canadian Journal of Statistics 37: 400–416; 2009 © 2009 Statistical Society of Canada  相似文献   

6.
Summary.  We propose to use calibrated imputation to compensate for missing values. This technique consists of finding final imputed values that are as close as possible to preliminary imputed values and are calibrated to satisfy constraints. Preliminary imputed values, potentially justified by an imputation model, are obtained through deterministic single imputation. Using appropriate constraints, the resulting imputed estimator is asymptotically unbiased for estimation of linear population parameters such as domain totals. A quasi-model-assisted approach is considered in the sense that inferences do not depend on the validity of an imputation model and are made with respect to the sampling design and a non-response model. An imputation model may still be used to generate imputed values and thus to improve the efficiency of the imputed estimator. This approach has the characteristic of handling naturally the situation where more than one imputation method is used owing to missing values in the variables that are used to obtain imputed values. We use the Taylor linearization technique to obtain a variance estimator under a general non-response model. For the logistic non-response model, we show that ignoring the effect of estimating the non-response model parameters leads to overestimating the variance of the imputed estimator. In practice, the overestimation is expected to be moderate or even negligible, as shown in a simulation study.  相似文献   

7.
Zero-inflated models are commonly used for modeling count and continuous data with extra zeros. Inflations at one point or two points apart from zero for modeling continuous data have been discussed less than that of zero inflation. In this article, inflation at an arbitrary point α as a semicontinuous distribution is presented and the mean imputation for a continuous response is discussed as a cause of having semicontinuous data. Also, inflation at two points and generally at k arbitrary points and their relation to cell-mean imputation in the mixture of continuous distributions are studied. To analyze the imputed data, a mixture of semicontinuous distributions is used. The effects of covariates on the dependent variable in a mixture of k semicontinuous distributions with inflation at k points are also investigated. In order to find the parameter estimates, the method of expectation–maximization (EM) algorithm is used. In a real data of Iranian Households Income and Expenditure Survey (IHIES), it is shown how to obtain a proper estimate of the population variance when continuous missing at random responses are mean imputed.  相似文献   

8.
Marginal imputation, that consists of imputing items separately, generally leads to biased estimators of bivariate parameters such as finite population coefficients of correlation. To overcome this problem, two main approaches have been considered in the literature: the first consists of using customary imputation methods such as random hot‐deck imputation and adjusting for the bias at the estimation stage. This approach was studied in Skinner & Rao 2002 . In this paper, we extend the results of Skinner & Rao 2002 to the case of arbitrary sampling designs and three variants of random hot‐deck imputation. The second approach consists of using an imputation method, which preserves the relationship between variables. Shao & Wang 2002 proposed a joint random regression imputation procedure that succeeds in preserving the relationships between two study variables. One drawback of the Shao–Wang procedure is that it suffers from an additional variability (called the imputation variance) due to the random selection of residuals, resulting in potentially inefficient estimators. Following Chauvet, Deville, & Haziza 2011 , we propose a fully efficient version of the Shao–Wang procedure that preserves the relationship between two study variables, while virtually eliminating the imputation variance. Results of a simulation study support our findings. An application using data from the Workplace and Employees Survey is also presented. The Canadian Journal of Statistics 40: 124–149; 2012 © 2011 Statistical Society of Canada  相似文献   

9.
This article addresses issues in creating public-use data files in the presence of missing ordinal responses and subsequent statistical analyses of the dataset by users. The authors propose a fully efficient fractional imputation (FI) procedure for ordinal responses with missing observations. The proposed imputation strategy retrieves the missing values through the full conditional distribution of the response given the covariates and results in a single imputed data file that can be analyzed by different data users with different scientific objectives. Two most critical aspects of statistical analyses based on the imputed data set,  validity  and  efficiency, are examined through regression analysis involving the ordinal response and a selected set of covariates. It is shown through both theoretical development and simulation studies that, when the ordinal responses are missing at random, the proposed FI procedure leads to valid and highly efficient inferences as compared to existing methods. Variance estimation using the fractionally imputed data set is also discussed. The Canadian Journal of Statistics 48: 138–151; 2020 © 2019 Statistical Society of Canada  相似文献   

10.
Dealing with incomplete data is a pervasive problem in statistical surveys. Bayesian networks have been recently used in missing data imputation. In this research, we propose a new methodology for the multivariate imputation of missing data using discrete Bayesian networks and conditional Gaussian Bayesian networks. Results from imputing missing values in coronary artery disease data set and milk composition data set as well as a simulation study from cancer-neapolitan network are presented to demonstrate and compare the performance of three Bayesian network-based imputation methods with those of multivariate imputation by chained equations (MICE) and the classical hot-deck imputation method. To assess the effect of the structure learning algorithm on the performance of the Bayesian network-based methods, two methods called Peter-Clark algorithm and greedy search-and-score have been applied. Bayesian network-based methods are: first, the method introduced by Di Zio et al. [Bayesian networks for imputation, J. R. Stat. Soc. Ser. A 167 (2004), 309–322] in which, each missing item of a variable is imputed using the information given in the parents of that variable; second, the method of Di Zio et al. [Multivariate techniques for imputation based on Bayesian networks, Neural Netw. World 15 (2005), 303–310] which uses the information in the Markov blanket set of the variable to be imputed and finally, our new proposed method which applies the whole available knowledge of all variables of interest, consisting the Markov blanket and so the parent set, to impute a missing item. Results indicate the high quality of our new proposed method especially in the presence of high missingness percentages and more connected networks. Also the new method have shown to be more efficient than the MICE method for small sample sizes with high missing rates.  相似文献   

11.
Nonresponse is a very common phenomenon in survey sampling. Nonignorable nonresponse – that is, a response mechanism that depends on the values of the variable having nonresponse – is the most difficult type of nonresponse to handle. This article develops a robust estimation approach to estimating equations (EEs) by incorporating the modelling of nonignorably missing data, the generalized method of moments (GMM) method and the imputation of EEs via the observed data rather than the imputed missing values when some responses are subject to nonignorably missingness. Based on a particular semiparametric logistic model for nonignorable missing response, this paper proposes the modified EEs to calculate the conditional expectation under nonignorably missing data. We can apply the GMM to infer the parameters. The advantage of our method is that it replaces the non-parametric kernel-smoothing with a parametric sampling importance resampling (SIR) procedure to avoid nonparametric kernel-smoothing problems with high dimensional covariates. The proposed method is shown to be more robust than some current approaches by the simulations.  相似文献   

12.
Missing observations due to non‐response are commonly encountered in data collected from sample surveys. The focus of this article is on item non‐response which is often handled by filling in (or imputing) missing values using the observed responses (donors). Random imputation (single or fractional) is used within homogeneous imputation classes that are formed on the basis of categorical auxiliary variables observed on all the sampled units. A uniform response rate within classes is assumed, but that rate is allowed to vary across classes. We construct confidence intervals (CIs) for a population parameter that is defined as the solution to a smooth estimating equation with data collected using stratified simple random sampling. The imputation classes are assumed to be formed across strata. Fractional imputation with a fixed number of random draws is used to obtain an imputed estimating function. An empirical likelihood inference method under the fractional imputation is proposed and its asymptotic properties are derived. Two asymptotically correct bootstrap methods are developed for constructing the desired CIs. In a simulation study, the proposed bootstrap methods are shown to outperform traditional bootstrap methods and some non‐bootstrap competitors under various simulation settings. The Canadian Journal of Statistics 47: 281–301; 2019 © 2019 Statistical Society of Canada  相似文献   

13.
This paper extends the ideas in Giommi (Proc. 45th Session of the Internat. Statistical Institute, Vol. 2 (1985) 577–578; Techniques d'enquête 13(2) (1987) 137–144) and, in Särndal and Swenson (Bull. Int. Statist. Inst. 15(2) (1985) 1–16; Int. Statist. Rev. 55(1987) 279–294). Given the parallel between a ‘three-phase sampling’ and a ‘sampling with subsequent unit and item nonresponse’, we apply results from three-phase sampling theory to nonresponse situation. To handle the practical problem of unknown distributions at the second and the third phases of selection (the response mechanisms) in the nonresponse case, we use two approaches of response probability estimation: response homogeneity groups (RHG) model (Särndal and Swenson, 1985, 1987) and the nonparametric estimation (Giommi, 1985, 1987). To motivate the three-phase selection, imputation procedures for item nonresponse are used with the RHG model for unit nonresponse. By means of a Monte Carlo study, we find that the regression-type estimators are the most precise of those studied under the two approaches of response probability estimation in terms of lower bias, mean square error and variance; variance estimator close to the true variance and achieved coverage rates closer to the nominal levels. The simulation study shows how poor the variance estimators are under the single imputation approach currently used to handle the problem of missing values.  相似文献   

14.
The additive model is considered when some observations on x are missing at random but corresponding observations on y are available. Especially for this model, missing at random is an interesting case because the complete case analysis is expected to be no more suitable. A simulation experiment is reported and the different methods are compared based on their superiority with respect to the sample mean squared error. Some focus is also given on the sample variance and the estimated bias. In detail, the complete case analysis, a kind of stochastic mean imputation, a single imputation and the nearest neighbor imputation are discussed.  相似文献   

15.
In this paper we propose a latent class based multiple imputation approach for analyzing missing categorical covariate data in a highly stratified data model. In this approach, we impute the missing data assuming a latent class imputation model and we use likelihood methods to analyze the imputed data. Via extensive simulations, we study its statistical properties and make comparisons with complete case analysis, multiple imputation, saturated log-linear multiple imputation and the Expectation–Maximization approach under seven missing data mechanisms (including missing completely at random, missing at random and not missing at random). These methods are compared with respect to bias, asymptotic standard error, type I error, and 95% coverage probabilities of parameter estimates. Simulations show that, under many missingness scenarios, latent class multiple imputation performs favorably when jointly considering these criteria. A data example from a matched case–control study of the association between multiple myeloma and polymorphisms of the Inter-Leukin 6 genes is considered.  相似文献   

16.
It is cleared in recent researches that the raising of missing values in datasets is inevitable. Imputation of missing data is one of the several methods which have been introduced to overcome this issue. Imputation techniques are trying to answer the case of missing data by covering missing values with reasonable estimates permanently. There are a lot of benefits for these procedures rather than their drawbacks. The operation of these methods has not been clarified, which means that they provide mistrust among analytical results. One approach to evaluate the outcomes of the imputation process is estimating uncertainty in the imputed data. Nonparametric methods are appropriate to estimating the uncertainty when data are not followed by any particular distribution. This paper deals with a nonparametric method for estimation and testing the significance of the imputation uncertainty, which is based on Wilcoxon test statistic, and which could be employed for estimating the precision of the imputed values created by imputation methods. This proposed procedure could be employed to judge the possibility of the imputation process for datasets, and to evaluate the influence of proper imputation methods when they are utilized to the same dataset. This proposed approach has been compared with other nonparametric resampling methods, including bootstrap and jackknife to estimate uncertainty in the imputed data under the Bayesian bootstrap imputation method. The ideas supporting the proposed method are clarified in detail, and a simulation study, which indicates how the approach has been employed in practical situations, is illustrated.  相似文献   

17.
Useful properties of a general-purpose imputation method for numerical data are suggested and discussed in the context of several large government surveys. Imputation based on predictive mean matching is proposed as a useful extension of methods in existing practice, and versions of the method are presented for unit nonresponse and item nonresponse with a general pattern of missingness. Extensions of the method to provide multiple imputations are also considered. Pros and cons of weighting adjustments are discussed, and weighting-based analogs to predictive mean matching are outlined.  相似文献   

18.
In this paper, we introduce a fresh methodology for imputing missing values by making use of sensible constraints on both a study variable and auxiliary variables that are correlated with the variable of interest. The resultant estimator based on these imputed values is shown to lead to the regression type method of imputation in survey sampling. Furthermore, when the data are hybrid of both that missing at random and missing complexly at random, the resultant estimator is shown to be a consistent estimator that has asymptotic mean squared error equal to that of the linear regression method of imputation. A generalization to any type of method of imputation is possible and has been included at the end.  相似文献   

19.
We consider surveys with one or more callbacks and use a series of logistic regressions to model the probabilities of nonresponse at first contact and subsequent callbacks. These probabilities are allowed to depend on covariates as well as the categorical variable of interest and so the nonresponse mechanism is nonignorable. Explicit formulae for the score functions and information matrices are given for some important special cases to facilitate implementation of the method of scoring for obtaining maximum likelihood estimates of the model parameters. For estimating finite population quantities, we suggest the imputation and prediction approaches as alternatives to weighting adjustment. Simulation results suggest that the proposed methods work well in reducing the bias due to nonresponse. In our study, the imputation and prediction approaches perform better than weighting adjustment and they continue to perform quite well in simulations involving misspecified response models.  相似文献   

20.
We study bias arising from rounding categorical variables following multivariate normal (MVN) imputation. This task has been well studied for binary variables, but not for more general categorical variables. Three methods that assign imputed values to categories based on fixed reference points are compared using 25 specific scenarios covering variables with k=3, …, 7 categories, and five distributional shapes, and for each k=3, …, 7, we examine the distribution of bias arising over 100,000 distributions drawn from a symmetric Dirichlet distribution. We observed, on both empirical and theoretical grounds, that one method (projected-distance-based rounding) is superior to the other two methods, and that the risk of invalid inference with the best method may be too high at sample sizes n≥150 at 50% missingness, n≥250 at 30% missingness and n≥1500 at 10% missingness. Therefore, these methods are generally unsatisfactory for rounding categorical variables (with up to seven categories) following MVN imputation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号