首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suppose that cause-effect relationships between variables can be described by a causal network corresponding to a linear structural equation model. Kuroki and Miyakawa (2003) proposed a graphical criterion for selecting covariates to identify the causal effect of a conditional intervention. In this paper, we extend Kuroki and Miyakawa (2003) graphical criterion for selecting covariates to identify the causal effect of a stochastic intervention. Since stochastic intervention is a generalization of conditional intervention, our paper makes the results of Kuroki and Miyakawa (2003) more generally applicable.  相似文献   

2.
Summary.  Formal rules governing signed edges on causal directed acyclic graphs are described and it is shown how these rules can be useful in reasoning about causality. Specifically, the notions of a monotonic effect, a weak monotonic effect and a signed edge are introduced. Results are developed relating these monotonic effects and signed edges to the sign of the causal effect of an intervention in the presence of intermediate variables. The incorporation of signed edges in the directed acyclic graph causal framework furthermore allows for the development of rules governing the relationship between monotonic effects and the sign of the covariance between two variables. It is shown that when certain assumptions about monotonic effects can be made then these results can be used to draw conclusions about the presence of causal effects even when data are missing on confounding variables.  相似文献   

3.
Propensity score-based estimators are commonly used to estimate causal effects in evaluation research. To reduce bias in observational studies, researchers might be tempted to include many, perhaps correlated, covariates when estimating the propensity score model. Taking into account that the propensity score is estimated, this study investigates how the efficiency of matching, inverse probability weighting, and doubly robust estimators change under the case of correlated covariates. Propositions regarding the large sample variances under certain assumptions on the data-generating process are given. The propositions are supplemented by several numerical large sample and finite sample results from a wide range of models. The results show that the covariate correlations may increase or decrease the variances of the estimators. There are several factors that influence how correlation affects the variance of the estimators, including the choice of estimator, the strength of the confounding toward outcome and treatment, and whether a constant or non-constant causal effect is present.  相似文献   

4.
In observational studies, the overall aim when fitting a model for the propensity score is to reduce bias for an estimator of the causal effect. To make the assumption of an unconfounded treatment plausible researchers might include many, possibly correlated, covariates in the propensity score model. In this paper, we study how the asymptotic efficiency of matching and inverse probability weighting estimators for average causal effects change when the covariates are correlated. We investigate the case with multivariate normal covariates, a logistic model for the propensity score and linear models for the potential outcomes and show results under different model assumptions. We show that the correlation can both increase and decrease the large sample variances of the estimators, and that the correlation affects the asymptotic efficiency of the estimators differently, both with regard to direction and magnitude. Moreover, the strength of the confounding towards the outcome and the treatment plays an important role.  相似文献   

5.
We consider causal inference in randomized studies for survival data with a cure fraction and all-or-none treatment non compliance. To describe the causal effects, we consider the complier average causal effect (CACE) and the complier effect on survival probability beyond time t (CESP), where CACE and CESP are defined as the difference of cure rate and non cured subjects’ survival probability between treatment and control groups within the complier class. These estimands depend on the distributions of survival times in treatment and control groups. Given covariates and latent compliance type, we model these distributions with transformation promotion time cure model whose parameters are estimated by maximum likelihood. Both the infinite dimensional parameter in the model and the mixture structure of the problem create some computational difficulties which are overcome by an expectation-maximization (EM) algorithm. We show the estimators are consistent and asymptotically normal. Some simulation studies are conducted to assess the finite-sample performance of the proposed approach. We also illustrate our method by analyzing a real data from the Healthy Insurance Plan of Greater New York.  相似文献   

6.
This article proposes a new mixed variable lot-size multiple dependent state sampling plan in which the attribute sampling plan can be used in the first stage and the variables multiple dependent state sampling plan based on the process capability index will be used in the second stage for the inspection of measurable quality characteristics. The proposed mixed plan is developed for both symmetric and asymmetric fraction non conforming. The optimal plan parameters can be determined by considering the satisfaction levels of the producer and the consumer simultaneously at an acceptable quality level and a limiting quality level, respectively. The performance of the proposed plan over the mixed single sampling plan based on Cpk and the mixed variable lot size plan based on Cpk with respect to the average sample number is also investigated. Tables are constructed for easy selection of plan parameters for both symmetric and asymmetric fraction non conforming and real world examples are also given for the illustration and practical implementation of the proposed mixed variable lot-size plan.  相似文献   

7.
There are several procedures for fitting generalized additive models, i.e. regression models for an exponential family response where the influence of each single covariates is assumed to have unknown, potentially non-linear shape. Simulated data are used to compare a smoothing parameter optimization approach for selection of smoothness and of covariates, a stepwise approach, a mixed model approach, and a procedure based on boosting techniques. In particular it is investigated how the performance of procedures is linked to amount of information, type of response, total number of covariates, number of influential covariates, and extent of non-linearity. Measures for comparison are prediction performance, identification of influential covariates, and smoothness of fitted functions. One result is that the mixed model approach returns sparse fits with frequently over-smoothed functions, while the functions are less smooth for the boosting approach and variable selection is less strict. The other approaches are in between with respect to these measures. The boosting procedure is seen to perform very well when little information is available and/or when a large number of covariates is to be investigated. It is somewhat surprising that in scenarios with low information the fitting of a linear model, even with stepwise variable selection, has not much advantage over the fitting of an additive model when the true underlying structure is linear. In cases with more information the prediction performance of all procedures is very similar. So, in difficult data situations the boosting approach can be recommended, in others the procedures can be chosen conditional on the aim of the analysis.  相似文献   

8.
AStA Advances in Statistical Analysis - When observational studies are used to establish the causal effects of treatments, the estimated effect is affected by treatment selection bias. The inverse...  相似文献   

9.
This paper examines both theoretically and empirically whether the common practice of using OLS multivariate regression models to estimate average treatment effects (ATEs) under experimental designs is justified by the Neyman model for causal inference. Using data from eight large U.S. social policy experiments, the paper finds that estimated standard errors and significance levels for ATE estimators are similar under the OLS and Neyman models when baseline covariates are included in the models, even though theory suggests that this may not have been the case. This occurs primarily because treatment effects do not appear to vary substantially across study subjects.  相似文献   

10.
Suppose we are interested in estimating the average causal effect (ACE) for the population mean from observational study. Because of simplicity and ease of interpretation, stratification by a propensity score (PS) is widely used to adjust for influence of confounding factors in estimation of the ACE. Appropriateness of the estimation by the PS stratification relies on correct specification of the PS. We propose an estimator based on stratification with multiple PS models by clustering techniques instead of model selection. If one of them correctly specifies, the proposed estimator removes bias and thus is more robust than the standard PS stratification.  相似文献   

11.
Summary.  When a treatment has a positive average causal effect (ACE) on an intermediate variable or surrogate end point which in turn has a positive ACE on a true end point, the treatment may have a negative ACE on the true end point due to the presence of unobserved confounders, which is called the surrogate paradox. A criterion for surrogate end points based on ACEs has recently been proposed to avoid the surrogate paradox. For a continuous or ordinal discrete end point, the distributional causal effect (DCE) may be a more appropriate measure for a causal effect than the ACE. We discuss criteria for surrogate end points based on DCEs. We show that commonly used models, such as generalized linear models and Cox's proportional hazard models, can make the sign of the DCE of the treatment on the true end point determinable by the sign of the DCE of the treatment on the surrogate even if the models include unobserved confounders. Furthermore, for a general distribution without any assumption of parametric models, we give a sufficient condition for a distributionally consistent surrogate and prove that it is almost necessary.  相似文献   

12.
Given data sampled from a number of variables, one is often interested in the underlying causal relationships in the form of a directed acyclic graph. In the general case, without interventions on some of the variables it is only possible to identify the graph up to its Markov equivalence class. However, in some situations one can find the true causal graph just from observational data, for example, in structural equation models with additive noise and nonlinear edge functions. Most current methods for achieving this rely on nonparametric independence tests. One of the problems there is that the null hypothesis is independence, which is what one would like to get evidence for. We take a different approach in our work by using a penalized likelihood as a score for model selection. This is practically feasible in many settings and has the advantage of yielding a natural ranking of the candidate models. When making smoothness assumptions on the probability density space, we prove consistency of the penalized maximum likelihood estimator. We also present empirical results for simulated scenarios and real two-dimensional data sets (cause–effect pairs) where we obtain similar results as other state-of-the-art methods.  相似文献   

13.
Summary.  Method effects often occur when different methods are used for measuring the same construct. We present a new approach for modelling this kind of phenomenon, consisting of a definition of method effects and a first model, the method effect model , that can be used for data analysis. This model may be applied to multitrait–multimethod data or to longitudinal data where the same construct is measured with at least two methods at all occasions. In this new approach, the definition of the method effects is based on the theory of individual causal effects by Neyman and Rubin. Method effects are accordingly conceptualized as the individual effects of applying measurement method j instead of k . They are modelled as latent difference scores in structural equation models. A reference method needs to be chosen against which all other methods are compared. The model fit is invariant to the choice of the reference method. The model allows the estimation of the average of the individual method effects, their variance, their correlation with the traits (and other latent variables) and the correlation of different method effects among each other. Furthermore, since the definition of the method effects is in line with the theory of causality, the method effects may (under certain conditions) be interpreted as causal effects of the method. The method effect model is compared with traditional multitrait–multimethod models. An example illustrates the application of the model to longitudinal data analysing the effect of negatively (such as 'feel bad') as compared with positively formulated items (such as 'feel good') measuring mood states.  相似文献   

14.
15.
This paper focuses on a situation in which a set of treatments is associated with a response through a set of supplementary variables in linear models as well as discrete models. Under the situation, we demonstrate that the causal effect can be estimated more accurately from the set of supplementary variables. In addition, we show that the set of supplementary variables can include selection variables and proxy variables as well. Furthermore, we propose selection criteria for supplementary variables based on the estimation accuracy of causal effects. From graph structures based on our results, we can judge certain situations under which the causal effect can be estimated more accurately by supplementary variables and reliably evaluate the causal effects from observed data.  相似文献   

16.
Odds ratios are frequently used to describe the relationship between a binary treatment or exposure and a binary outcome. An odds ratio can be interpreted as a causal effect or a measure of association, depending on whether it involves potential outcomes or the actual outcome. An odds ratio can also be characterized as marginal versus conditional, depending on whether it involves conditioning on covariates. This article proposes a method for estimating a marginal causal odds ratio subject to confounding. The proposed method is based on a logistic regression model relating the outcome to the treatment indicator and potential confounders. Simulation results show that the proposed method performs reasonably well in moderate-sized samples and may even offer an efficiency gain over the direct method based on the sample odds ratio in the absence of confounding. The method is illustrated with a real example concerning coronary heart disease.  相似文献   

17.
Both continuous and categorical covariates are common in traditional Chinese medicine (TCM) research, especially in the clinical syndrome identification and in the risk prediction research. For groups of dummy variables which are generated by the same categorical covariate, it is important to penalize them group-wise rather than individually. In this paper, we discuss the group lasso method for a risk prediction analysis in TCM osteoporosis research. It is the first time to apply such a group-wise variable selection method in this field. It may lead to new insights of using the grouped penalization method to select appropriate covariates in the TCM research. The introduced methodology can select categorical and continuous variables, and estimate their parameters simultaneously. In our application of the osteoporosis data, four covariates (including both categorical and continuous covariates) are selected out of 52 covariates. The accuracy of the prediction model is excellent. Compared with the prediction model with different covariates, the group lasso risk prediction model can significantly decrease the error rate and help TCM doctors to identify patients with a high risk of osteoporosis in clinical practice. Simulation results show that the application of the group lasso method is reasonable for the categorical covariates selection model in this TCM osteoporosis research.  相似文献   

18.
The causal effect of a treatment is estimated at different levels of treatment compliance, in a placebo-controlled trial on the reduction of blood pressure. The structural nested mean model makes no direct assumptions on selected treatment compliance levels and placebo prognosis but relies on the randomization assumption and a parametric form for causal effects. It can be seen as a regression model for unpaired data, where pre- and post-randomization covariables are treated differently. The causal parameters are found as solutions to estimating equations involving estimated placebo response and treatment compliance based on base-line covariates for all subjects. Our example considers a linear effect of the percentage of prescribed dose taken on achieved diastolic blood pressure reduction. We propose an exploration of structural model checks. In the example, this reveals an interaction between the causal effect of active dose taken and the base-line body weight of the patient.  相似文献   

19.
In a randomized controlled trial (RCT), it is possible to improve precision and power and reduce sample size by appropriately adjusting for baseline covariates. There are multiple statistical methods to adjust for prognostic baseline covariates, such as an ANCOVA method. In this paper, we propose a clustering-based stratification method for adjusting for the prognostic baseline covariates. Clusters (strata) are formed only based on prognostic baseline covariates, not outcome data nor treatment assignment. Therefore, the clustering procedure can be completed prior to the availability of outcome data. The treatment effect is estimated in each cluster, and the overall treatment effect is derived by combining all cluster-specific treatment effect estimates. The proposed implementation of the procedure is described. Simulations studies and an example are presented.  相似文献   

20.

In the context of causal mediation analysis, prevailing notions of direct and indirect effects are based on nested counterfactuals. These can be problematic regarding interpretation and identifiability especially when the mediator is a time-dependent process and the outcome is survival or, more generally, a time-to-event outcome. We propose and discuss an alternative definition of mediated effects that does not suffer from these problems, and is more transparent than the current alternatives. Our proposal is based on the extended graphical approach of Robins and Richardson (in: Shrout (ed) Causality and psychopathology: finding the determinants of disorders and their cures, Oxford University Press, Oxford, 2011), where treatment is decomposed into different components, or aspects, along different causal paths corresponding to real world mechanisms. This is an interesting alternative motivation for any causal mediation setting, but especially for survival outcomes. We give assumptions allowing identifiability of such alternative mediated effects leading to the familiar mediation g-formula (Robins in Math Model 7:1393, 1986); this implies that a number of available methods of estimation can be applied.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号