首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Survival data obtained from prevalent cohort study designs are often subject to length-biased sampling. Frequentist methods including estimating equation approaches, as well as full likelihood methods, are available for assessing covariate effects on survival from such data. Bayesian methods allow a perspective of probability interpretation for the parameters of interest, and may easily provide the predictive distribution for future observations while incorporating weak prior knowledge on the baseline hazard function. There is lack of Bayesian methods for analyzing length-biased data. In this paper, we propose Bayesian methods for analyzing length-biased data under a proportional hazards model. The prior distribution for the cumulative hazard function is specified semiparametrically using I-Splines. Bayesian conditional and full likelihood approaches are developed for analyzing simulated and real data.  相似文献   

2.
Maximum Likelihood Estimations and EM Algorithms with Length-biased Data   总被引:2,自引:0,他引:2  
Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, epidemiological, genetic and cancer screening studies. Length-biased right-censored data have a unique data structure different from traditional survival data. The nonparametric and semiparametric estimations and inference methods for traditional survival data are not directly applicable for length-biased right-censored data. We propose new expectation-maximization algorithms for estimations based on full likelihoods involving infinite dimensional parameters under three settings for length-biased data: estimating nonparametric distribution function, estimating nonparametric hazard function under an increasing failure rate constraint, and jointly estimating baseline hazards function and the covariate coefficients under the Cox proportional hazards model. Extensive empirical simulation studies show that the maximum likelihood estimators perform well with moderate sample sizes and lead to more efficient estimators compared to the estimating equation approaches. The proposed estimates are also more robust to various right-censoring mechanisms. We prove the strong consistency properties of the estimators, and establish the asymptotic normality of the semi-parametric maximum likelihood estimators under the Cox model using modern empirical processes theory. We apply the proposed methods to a prevalent cohort medical study. Supplemental materials are available online.  相似文献   

3.
Testing the equality of two survival distributions can be difficult in a prevalent cohort study when non random sampling of subjects is involved. Due to the biased sampling scheme, independent censoring assumption is often violated. Although the issues about biased inference caused by length-biased sampling have been widely recognized in statistical, epidemiological and economical literature, there is no satisfactory solution for efficient two-sample testing. We propose an asymptotic most efficient nonparametric test by properly adjusting for length-biased sampling. The test statistic is derived from a full likelihood function, and can be generalized from the two-sample test to a k-sample test. The asymptotic properties of the test statistic under the null hypothesis are derived using its asymptotic independent and identically distributed representation. We conduct extensive Monte Carlo simulations to evaluate the performance of the proposed test statistics and compare them with the conditional test and the standard logrank test for different biased sampling schemes and right-censoring mechanisms. For length-biased data, empirical studies demonstrated that the proposed test is substantially more powerful than the existing methods. For general left-truncated data, the proposed test is robust, still maintains accurate control of type I error rate, and is also more powerful than the existing methods, if the truncation patterns and right-censoring patterns are the same between the groups. We illustrate the methods using two real data examples.  相似文献   

4.
Right-censored time-to-event data are often observed from a cohort of prevalent cases that are subject to length-biased sampling. Informative right censoring of data from the prevalent cohort within the population often makes it difficult to model risk factors on the unbiased failure times for the general population, because the observed failure times are length biased. In this paper, we consider two classes of flexible semiparametric models: the transformation models and the accelerated failure time models, to assess covariate effects on the population failure times by modeling the length-biased times. We develop unbiased estimating equation approaches to obtain the consistent estimators of the regression coefficients. Large sample properties for the estimators are derived. The methods are confirmed through simulations and illustrated by application to data from a study of a prevalent cohort of dementia patients.  相似文献   

5.
Length-biased data arise in many important applications including epidemiological cohort studies, cancer prevention trials and studies of labor economics. Such data are also often subject to right censoring due to loss of follow-up or the end of study. In this paper, we consider a proportional hazards model with varying coefficients for right-censored and length-biased data, which is used to study the interact effect nonlinearly of covariates with an exposure variable. A local estimating equation method is proposed for the unknown coefficients and the intercept function in the model. The asymptotic properties of the proposed estimators are established by using the martingale theory and kernel smoothing techniques. Our simulation studies demonstrate that the proposed estimators have an excellent finite-sample performance. The Channing House data is analyzed to demonstrate the applications of the proposed method.  相似文献   

6.
Under the case-cohort design introduced by Prentice (Biometrica 73:1–11, 1986), the covariate histories are ascertained only for the subjects who experience the event of interest (i.e., the cases) during the follow-up period and for a relatively small random sample from the original cohort (i.e., the subcohort). The case-cohort design has been widely used in clinical and epidemiological studies to assess the effects of covariates on failure times. Most statistical methods developed for the case-cohort design use the proportional hazards model, and few methods allow for time-varying regression coefficients. In addition, most methods disregard data from subjects outside of the subcohort, which can result in inefficient inference. Addressing these issues, this paper proposes an estimation procedure for the semiparametric additive hazards model with case-cohort/two-phase sampling data, allowing the covariates of interest to be missing for cases as well as for non-cases. A more flexible form of the additive model is considered that allows the effects of some covariates to be time varying while specifying the effects of others to be constant. An augmented inverse probability weighted estimation procedure is proposed. The proposed method allows utilizing the auxiliary information that correlates with the phase-two covariates to improve efficiency. The asymptotic properties of the proposed estimators are established. An extensive simulation study shows that the augmented inverse probability weighted estimation is more efficient than the widely adopted inverse probability weighted complete-case estimation method. The method is applied to analyze data from a preventive HIV vaccine efficacy trial.  相似文献   

7.
A class of cohort sampling designs, including nested case–control, case–cohort and classical case–control designs involving survival data, is studied through a unified approach using Cox's proportional hazards model. By finding an optimal sample reuse method via local averaging, a closed form estimating function is obtained, leading directly to the estimators of the regression parameters that are relatively easy to compute and are more efficient than some commonly used estimators in case–cohort and nested case–control studies. A semiparametric efficient estimator can also be found with some further computation. In addition, the class of sampling designs in this study provides a variety of sampling options and relaxes the restrictions of sampling schemes that are currently available.  相似文献   

8.
Abstract

In general, survival data are time-to-event data, such as time to death, time to appearance of a tumor, or time to recurrence of a disease. Models for survival data have frequently been based on the proportional hazards model, proposed by Cox. The Cox model has intensive application in the field of social, medical, behavioral and public health sciences. In this paper we propose a more efficient sampling method of recruiting subjects for survival analysis. We propose using a Moving Extreme Ranked Set Sampling (MERSS) scheme with ranking based on an easy-to-evaluate baseline auxiliary variable known to be associated with survival time. This paper demonstrates that this approach provides a more powerful testing procedure as well as a more efficient estimate of hazard ratio than that based on simple random sampling (SRS). Theoretical derivation and simulation studies are provided. The Iowa 65+ Rural study data are used to illustrate the methods developed in this paper.  相似文献   

9.
What population does the sample represent? The answer to this question is of crucial importance when estimating a survivor function in duration studies. As is well-known, in a stationary population, survival data obtained from a cross-sectional sample taken from the population at time $t_0$ represents not the target density $f(t)$ but its length-biased version proportional to $tf(t)$ , for $t>0$ . The problem of estimating survivor function from such length-biased samples becomes more complex, and interesting, in presence of competing risks and censoring. This paper lays out a sampling scheme related to a mixed Poisson process and develops nonparametric estimators of the survivor function of the target population assuming that the two independent competing risks have proportional hazards. Two cases are considered: with and without independent censoring before length biased sampling. In each case, the weak convergence of the process generated by the proposed estimator is proved. A well-known study of the duration in power for political leaders is used to illustrate our results. Finally, a simulation study is carried out in order to assess the finite sample behaviour of our estimators.  相似文献   

10.
Length-biased data, which are often encountered in engineering, economics and epidemiology studies, are generally subject to right censoring caused by the research ending or the follow-up loss. The structure of length-biased data is distinct from conventional survival data, since the independent censoring assumption is often violated due to the biased sampling. In this paper, a proportional hazard model with varying coefficients is considered for the length-biased and right-censored data. A local composite likelihood procedure is put forward for the estimation of unknown coefficient functions in the model, and large sample properties of the proposed estimators are also obtained. Additionally, an extensive simulation studies are conducted to assess the finite sample performance of the proposed method and a data set from the Academy Awards is analyzed.  相似文献   

11.
Length‐biased sampling data are often encountered in the studies of economics, industrial reliability, epidemiology, genetics and cancer screening. The complication of this type of data is due to the fact that the observed lifetimes suffer from left truncation and right censoring, where the left truncation variable has a uniform distribution. In the Cox proportional hazards model, Huang & Qin (Journal of the American Statistical Association, 107, 2012, p. 107) proposed a composite partial likelihood method which not only has the simplicity of the popular partial likelihood estimator, but also can be easily performed by the standard statistical software. The accelerated failure time model has become a useful alternative to the Cox proportional hazards model. In this paper, by using the composite partial likelihood technique, we study this model with length‐biased sampling data. The proposed method has a very simple form and is robust when the assumption that the censoring time is independent of the covariate is violated. To ease the difficulty of calculations when solving the non‐smooth estimating equation, we use a kernel smoothed estimation method (Heller; Journal of the American Statistical Association, 102, 2007, p. 552). Large sample results and a re‐sampling method for the variance estimation are discussed. Some simulation studies are conducted to compare the performance of the proposed method with other existing methods. A real data set is used for illustration.  相似文献   

12.
Widely recognized in many fields including economics, engineering, epidemiology, health sciences, technology and wildlife management, length-biased sampling generates biased and right-censored data but often provide the best information available for statistical inference. Different from traditional right-censored data, length-biased data have unique aspects resulting from their sampling procedures. We exploit these unique aspects and propose a general imputation-based estimation method for analyzing length-biased data under a class of flexible semiparametric transformation models. We present new computational algorithms that can jointly estimate the regression coefficients and the baseline function semiparametrically. The imputation-based method under the transformation model provides an unbiased estimator regardless whether the censoring is independent or not on the covariates. We establish large-sample properties using the empirical processes method. Simulation studies show that under small to moderate sample sizes, the proposed procedure has smaller mean square errors than two existing estimation procedures. Finally, we demonstrate the estimation procedure by a real data example.  相似文献   

13.
ABSTRACT

Weighted distributions, as an example of informative sampling, work appropriately under the missing at random mechanism since they neglect missing values and only completely observed subjects are used in the study plan. However, length-biased distributions, as a special case of weighted distributions, remove the subjects with short length deliberately, which surely meet the missing not at random mechanism. Accordingly, applying length-biased distributions jeopardizes the results by producing biased estimates. Hence, an alternate method has to be used such that the results are improved by means of valid inferences. We propose methods that are based on weighted distributions and joint modelling procedure and compare them in analysing longitudinal data. After introducing three methods in use, a set of simulation studies and analysis of two real longitudinal datasets affirm our claim.  相似文献   

14.
Left-truncated and right-censored (LTRC) data are encountered frequently due to a prevalent cohort sampling in follow-up studies. Because of the skewness of the distribution of survival time, quantile regression is a useful alternative to the Cox's proportional hazards model and the accelerated failure time model for survival analysis. In this paper, we apply the quantile regression model to LTRC data and develops an unbiased estimating equation for regression coefficients. The proposed estimation methods use the inverse probabilities of truncation and censoring weighting technique. The resulting estimator is uniformly consistent and asymptotically normal. The finite-sample performance of the proposed estimation methods is also evaluated using extensive simulation studies. Finally, analysis of real data is presented to illustrate our proposed estimation methods.  相似文献   

15.
This paper presents a study of the performance of simple and counter-matched nested case-control sampling relative to a full cohort study. First we review methods for estimating the regression parameters and the integrated baseline hazard for Cox's proportional hazards model from cohort and case-control data. Then the asymptotic distributional properties of these estimators are recapitulated, and relative efficiency results are presented both for regression and baseline hazard estimation.  相似文献   

16.
Generalized case–cohort designs have been proved to be a cost-effective way to enhance effectiveness in large epidemiological cohort. In generalized case–cohort design, we first select a subcohort from the underlying cohort by simple random sampling, and then sample a subset of the failures in the remaining subjects. In this article, we propose the inference procedure for the unknown regression parameters in the additive hazards model and develop an optimal sample size allocations to achieve maximum power at a given budget in generalized case–cohort design. The finite sample performance of the proposed method is evaluated through simulation studies. The proposed method is applied to a real data set from the National Wilm's Tumor Study Group.  相似文献   

17.
Shi  Yushu  Laud  Purushottam  Neuner  Joan 《Lifetime data analysis》2021,27(1):156-176

In this paper, we first propose a dependent Dirichlet process (DDP) model using a mixture of Weibull models with each mixture component resembling a Cox model for survival data. We then build a Dirichlet process mixture model for competing risks data without regression covariates. Next we extend this model to a DDP model for competing risks regression data by using a multiplicative covariate effect on subdistribution hazards in the mixture components. Though built on proportional hazards (or subdistribution hazards) models, the proposed nonparametric Bayesian regression models do not require the assumption of constant hazard (or subdistribution hazard) ratio. An external time-dependent covariate is also considered in the survival model. After describing the model, we discuss how both cause-specific and subdistribution hazard ratios can be estimated from the same nonparametric Bayesian model for competing risks regression. For use with the regression models proposed, we introduce an omnibus prior that is suitable when little external information is available about covariate effects. Finally we compare the models’ performance with existing methods through simulations. We also illustrate the proposed competing risks regression model with data from a breast cancer study. An R package “DPWeibull” implementing all of the proposed methods is available at CRAN.

  相似文献   

18.
The case-cohort sampling, first proposed in Prentice (Biometrika 73:1–11, 1986), is one of the most effective cohort designs for analysis of event occurrence, with the regression model being the typical Cox proportional hazards model. This paper extends to consider the case-cohort design for recurrent events with certain specific clustering feature, which is captured by a properly modified Cox-type self-exciting intensity model. We discuss the advantage of using this model and validate the pseudo-likelihood method. Simulation studies are presented in support of the theory. Application is illustrated with analysis of a bladder cancer data.  相似文献   

19.

Time-to-event data often violate the proportional hazards assumption inherent in the popular Cox regression model. Such violations are especially common in the sphere of biological and medical data where latent heterogeneity due to unmeasured covariates or time varying effects are common. A variety of parametric survival models have been proposed in the literature which make more appropriate assumptions on the hazard function, at least for certain applications. One such model is derived from the First Hitting Time (FHT) paradigm which assumes that a subject’s event time is determined by a latent stochastic process reaching a threshold value. Several random effects specifications of the FHT model have also been proposed which allow for better modeling of data with unmeasured covariates. While often appropriate, these methods often display limited flexibility due to their inability to model a wide range of heterogeneities. To address this issue, we propose a Bayesian model which loosens assumptions on the mixing distribution inherent in the random effects FHT models currently in use. We demonstrate via simulation study that the proposed model greatly improves both survival and parameter estimation in the presence of latent heterogeneity. We also apply the proposed methodology to data from a toxicology/carcinogenicity study which exhibits nonproportional hazards and contrast the results with both the Cox model and two popular FHT models.

  相似文献   

20.
In many applications, statistical data are frequently observed subject to a retrospective sampling criterion resulting in right-truncated data. In this article, a general class of semiparametric transformation models that include proportional hazards model and proportional odds model as special cases is studied for the analysis of right-truncated data. We proposed two estimators for regression coefficients. The first estimator is based on martingale estimating equations. The second estimator is based on the conditional likelihood function given the truncation times. The asymptotic properties of both estimators are derived. The finite sample performance is examined through a simulation study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号