首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model for analyzing release-recapture data is presented that generalizes a previously existing individual covariate model to include multiple groups of animals. As in the previous model, the generalized version includes selection parameters that relate individual covariates to survival potential. Significance of the selection parameters was equivalent to significance of the individual covariates. Simulation studies were conducted to investigate three inferential properties with respect to the selection parameters: (1) sample size requirements, (2) validity of the likelihood ratio test (LRT) and (3) power of the LRT. When the survival and capture probabilities ranged from 0.5 to 1.0, a total sample size of 300 was necessary to achieve a power of 0.80 at a significance level of 0.1 when testing the significance of the selection parameters. However, only half that (a total of 150) was necessary for the distribution of the maximum likelihood estimators of the selection parameters to approximate their asymptotic distributions. In general, as the survival and capture probabilities decreased, the sample size requirements increased. The validity of the LRT for testing the significance of the selection parameters was confirmed because the LRT statistic was distributed as theoretically expected under the null hypothesis, i.e. like a chi 2 random variable. When the baseline survival model was fully parameterized with population and interval effects, the LRT was also valid in the presence of unaccounted for random variation. The power of the LRT for testing the selection parameters was unaffected by over-parameterization of the baseline survival and capture models. The simulation studies showed that for testing the significance of individual covariates to survival the LRT was remarkably robust to assumption violations.  相似文献   

2.
A model for analyzing release-recapture data is presented that generalizes a previously existing individual covariate model to include multiple groups of animals. As in the previous model, the generalized version includes selection parameters that relate individual covariates to survival potential. Significance of the selection parameters was equivalent to significance of the individual covariates. Simulation studies were conducted to investigate three inferential properties with respect to the selection parameters: (1) sample size requirements, (2) validity of the likelihood ratio test (LRT) and (3) power of the LRT. When the survival and capture probabilities ranged from 0.5 to 1.0, a total sample size of 300 was necessary to achieve a power of 0.80 at a significance level of 0.1 when testing the significance of the selection parameters. However, only half that (a total of 150) was necessary for the distribution of the maximum likelihood estimators of the selection parameters to approximate their asymptotic distributions. In general, as the survival and capture probabilities decreased, the sample size requirements increased. The validity of the LRT for testing the significance of the selection parameters was confirmed because the LRT statistic was distributed as theoretically expected under the null hypothesis, i.e. like a chi 2 random variable. When the baseline survival model was fully parameterized with population and interval effects, the LRT was also valid in the presence of unaccounted for random variation. The power of the LRT for testing the selection parameters was unaffected by over-parameterization of the baseline survival and capture models. The simulation studies showed that for testing the significance of individual covariates to survival the LRT was remarkably robust to assumption violations.  相似文献   

3.
In this paper the generalized compound Rayleigh model, exhibiting flexible hazard rate, is high¬lighted. This makes it attractive for modelling survival times of patients showing characteristics of a random hazard rate. The Bayes estimators are derived for the parameters of this model and some survival time parameters from a right censored sample. This is done with respect to conjugate and discrete priors on the parameters of this model, under the squared error loss function, Varian's asymmetric linear-exponential (linex) loss function and a weighted linex loss function. The future survival time of a patient is estimated under these loss functions. A Monte Carlo simu¬lation procedure is used where closed form expressions of the estimators cannot be obtained. An example illustrates the proposed estimators for this model.  相似文献   

4.
Frailty models are used in the survival analysis to account for the unobserved heterogeneity in the individual risks to disease and death. To analyze the bivariate data on related survival times (e.g., matched pairs experiments, twin or family data), the shared frailty models were suggested. In this article, we introduce the shared gamma frailty models with the reversed hazard rate. We develop the Bayesian estimation procedure using the Markov chain Monte Carlo (MCMC) technique to estimate the parameters involved in the model. We present a simulation study to compare the true values of the parameters with the estimated values. We apply the model to a real life bivariate survival dataset.  相似文献   

5.
Current survival techniques do not provide a good method for handling clinical trials with a large percent of censored observations. This research proposes using time-dependent surrogates of survival as outcome variables, in conjunction with observed survival time, to improve the precision in comparing the relative effects of two treatments on the distribution of survival time. This is in contrast to the standard method used today which uses the marginal density of survival time, T. only, or the marginal density of a surrogate, X, only, therefore, ignoring some available information. The surrogate measure, X, may be a fixed value or a time-dependent variable, X(t). X is a summary measure of some of the covariates measured throughout the trial that provide additional information on a subject's survival time. It is possible to model these time-dependent covariate values and relate the parameters in the model to the parameters in the distribution of T given X. The result is that three new models are available for the analysis of clinical trials. All three models use the joint density of survival time and a surrogate measure. Given one of three different assumed mechanisms of the potential treatment effect, each of the three methods improves the precision of the treatment estimate.  相似文献   

6.
Demographic and Health Surveys collect child survival times that are clustered at the family and community levels. It is assumed that each cluster has a specific, unobservable, random frailty that induces an association in the survival times within the cluster. The Cox proportional hazards model, with family and community random frailties acting multiplicatively on the hazard rate, is presented. The estimation of the fixed effect and the association parameters of the modified model is then examined using the Gibbs sampler and the expectation–maximization (EM) algorithm. The methods are compared using child survival data collected in the 1992 Demographic and Health Survey of Malawi. The two methods lead to very similar estimates of fixed effect parameters. However, the estimates of random effect variances from the EM algorithm are smaller than those of the Gibbs sampler. Both estimation methods reveal considerable family variation in the survival of children, and very little variability over the communities.  相似文献   

7.
Survival times for the Acacia mangium plantation in the Segaliud Lokan Project, Sabah, East Malaysia were analysed based on 20 permanent sample plots (PSPs) established in 1988 as a spacing experiment. The PSPs were established following a complete randomized block design with five levels of spacing randomly assigned to units within four blocks at different sites. The survival times of trees in years are of interest. Since the inventories were only conducted annually, the actual survival time for each tree was not observed. Hence, the data set comprises censored survival times. Initial analysis of the survival of the Acacia mangium plantation suggested there is block by spacing interaction; a Weibull model gives a reasonable fit to the replicate survival times within each PSP; but a standard Weibull regression model is inappropriate because the shape parameter differs between PSPs. In this paper we investigate the form of the non-constant Weibull shape parameter. Parsimonious models for the Weibull survival times have been derived using maximum likelihood methods. The factor selection for the parameters is based on a backward elimination procedure. The models are compared using likelihood ratio statistics. The results suggest that both Weibull parameters depend on spacing and block.  相似文献   

8.
This paper is about the analysis of paired survival data using the exponential bivariate model of Sarkar for the underlying survival times, (X,Y), subject to censoring. Under this parametric model we test parameters in the presence of covariates. We consider first, tests of hypotheses of independence and equality of survival marginals, and second, test of hypotheses of covariate effects and survival superiority of one marginal over the other are considered. For this last question we applied a statistical test based on the Union-intersection principle.  相似文献   

9.
We describe a method for estimating the marginal cost–effectiveness ratio (CER) of two competing treatments or intervention strategies after adjusting for covariates that may influence the primary endpoint of survival. A Cox regression model is used for modeling covariates and estimates of both the cost and effectiveness parameters, which depend on the survival curve, are obtained from the estimated survival functions for each treatment at a specified covariate. Confidence intervals for the covariate-adjusted CER are presented.  相似文献   

10.
In the analysis of time-to-event data, restricted mean survival time has been well investigated in the literature and provided by many commercial software packages, while calculating mean survival time remains as a challenge due to censoring or insufficient follow-up time. Several researchers have proposed a hybrid estimator of mean survival based on the Kaplan–Meier curve with an extrapolated tail. However, this approach often leads to biased estimate due to poor estimate of the parameters in the extrapolated “tail” and the large variability associated with the tail of the Kaplan–Meier curve due to small set of patients at risk. Two key challenges in this approach are (1) where the extrapolation should start and (2) how to estimate the parameters for the extrapolated tail. The authors propose a novel approach to calculate mean survival time to address these two challenges. In the proposed approach, an algorithm is used to search if there are any time points where the hazard rates change significantly. The survival function is estimated by the Kaplan–Meier method prior to the last change point and approximated by an exponential function beyond the last change point. The parameter in the exponential function is estimated locally. Mean survival time is derived based on this survival function. The simulation and case studies demonstrated the superiority of the proposed approach.  相似文献   

11.
The unknown or unobservable risk factors in the survival analysis cause heterogeneity between individuals. Frailty models are used in the survival analysis to account for the unobserved heterogeneity in individual risks to disease and death. To analyze the bivariate data on related survival times, the shared frailty models were suggested. The most common shared frailty model is a model in which frailty act multiplicatively on the hazard function. In this paper, we introduce the shared gamma frailty model and the inverse Gaussian frailty model with the reversed hazard rate. We introduce the Bayesian estimation procedure using Markov chain Monte Carlo (MCMC) technique to estimate the parameters involved in the model. We present a simulation study to compare the true values of the parameters with the estimated values. We also apply the proposed models to the Australian twin data set and a better model is suggested.  相似文献   

12.
We apply the univariate sliced inverse regression to survival data. Our approach is different from the other papers on this subject. The right-censored observations are taken into account during the slicing of the survival times by assigning each of them with equal weight to all of the slices with longer survival. We test this method with different distributions for the two main survival data models, the accelerated lifetime model and Cox’s proportional hazards model. In both cases and under different conditions of sparsity, sample size and dimension of parameters, this non-parametric approach finds the data structure and can be viewed as a variable selector.  相似文献   

13.
Medical research frequently focuses on the relationship between quality of life (QoL) and survival time of subjects. QoL may be one of the most important factors that could be used to predict survival, making it worth identifying factors that jointly affect survival and QoL. We propose a semiparametric joint model that consists of item response and survival components, where these two components are linked through latent variables. Several popular ordinal models are considered and compared in the item response component, while the Cox proportional hazards model is used in the survival component. We estimate the baseline hazard function and model parameters simultaneously, through a profile likelihood approach. We illustrate the method using an example from a clinical study.  相似文献   

14.
Frailty models are used in the survival analysis to account for the unobserved heterogeneity in individual risks to disease and death. To analyze the bivariate data on related survival times (e.g., matched pairs experiments, twin or family data) the shared frailty models were suggested. Shared frailty models are used despite their limitations. To overcome their disadvantages correlated frailty models may be used. In this article, we introduce the gamma correlated frailty models with two different baseline distributions namely, the generalized log logistic, and the generalized Weibull. We introduce the Bayesian estimation procedure using Markov chain Monte Carlo (MCMC) technique to estimate the parameters involved in these models. We present a simulation study to compare the true values of the parameters with the estimated values. Also we apply these models to a real life bivariate survival dataset related to the kidney infection data and a better model is suggested for the data.  相似文献   

15.
Competing risks data often occur in many medical follow-up studies. When the survival time is the outcome variable, the restricted mean survival time has heuristic and clinically meaningful interpretation. In this article, we propose a class of regression models for the restricted mean survival time in the competing risks setting. We adopt a technique of pseudo-observations to develop estimating equation approaches for the model parameters and establish asymptotic properties of the resulting estimators. The finite-sample behavior of the proposed method is evaluated through simulation studies, and an application to the Women’s Interagency HIV Study is provided.  相似文献   

16.
In this paper, we study the survival times of alternately occurring events. The dependence between the times to the two events is modelled through the Archimedean copula, while the dependence over the recurring cycles is modelled through a functional relationship of the distribution parameters. Taking account of appropriate censoring that may be present in the data, the model parameters are estimated using the maximum likelihood method. The standard errors of the estimators are then derived and confidence belts for the survival functions constructed. Methods for choosing the appropriate copula are also discussed. The results are illustrated through a clinical trial data on patients suffering from cystic fibrosis. A simulation study is also done to corroborate the results.  相似文献   

17.
We conducted an experiment to examine the effect of neckbands, controlling for differences in sex, species and year of study (1991-1997), on probabilities of capture, survival, reporting, and fidelity in non-breeding small Canada ( Branta canadensis hutchinsi ) and white-fronted ( Anser albifrons frontalis ) geese. In Canada's central arctic, we systematically double-marked about half of the individuals from each species with neckbands and legbands, and we marked the other half only with legbands. We considered 48 a priori models that included combinations of sex, species, year, and neckband effects on the four population parameters produced by Burnham's (1993) model, using AIC for model selection. The four best approximating models each included a negative effect of neckbands on survival, and effect size varied among years. True survival probability of neckbanded birds annually ranged from 0.006 to 0.23 and 0.039 to 0.22 (Canada and white-fronted geese, respectively) lower than for conspecifics without neckbands. Changes in estimates of survival probability in neckbanded birds appeared to attenuate more recently, particularly in Canada Geese, a result that we suspect was related to lower retention rates of neckbands. We urge extreme caution in use of neckbands for estimation of certain population parameters, and discourage their use for estimation of unbiased survival probability in these two species.  相似文献   

18.
The aim of this study is to apply the Bayesian method of identifying optimal experimental designs to a toxicokinetic-toxicodynamic model that describes the response of aquatic organisms to time dependent concentrations of toxicants. As for experimental designs, we restrict ourselves to pulses and constant concentrations. A design of an experiment is called optimal within this set of designs if it maximizes the expected gain of knowledge about the parameters. Focus is on parameters that are associated with the auxiliary damage variable of the model that can only be inferred indirectly from survival time series data. Gain of knowledge through an experiment is quantified both with the ratio of posterior to prior variances of individual parameters and with the entropy of the posterior distribution relative to the prior on the whole parameter space. The numerical methods developed to calculate expected gain of knowledge are expected to be useful beyond this case study, in particular for multinomially distributed data such as survival time series data.  相似文献   

19.
Abstract

Frailty models are used in survival analysis to account for unobserved heterogeneity in individual risks to disease and death. To analyze bivariate data on related survival times (e.g., matched pairs experiments, twin, or family data), shared frailty models were suggested. Shared frailty models are frequently used to model heterogeneity in survival analysis. The most common shared frailty model is a model in which hazard function is a product of random factor(frailty) and baseline hazard function which is common to all individuals. There are certain assumptions about the baseline distribution and distribution of frailty. In this paper, we introduce shared gamma frailty models with reversed hazard rate. We introduce Bayesian estimation procedure using Markov Chain Monte Carlo (MCMC) technique to estimate the parameters involved in the model. We present a simulation study to compare the true values of the parameters with the estimated values. Also, we apply the proposed model to the Australian twin data set.  相似文献   

20.
The authors define a new semiparametric Archimedean copula family which has a flexible dependence structure. The generator of the family is a local interpolation of existing generators. It has locally‐defined dependence parameters. The authors present a penalized constrained least‐squares method to estimate and smooth these parameters. They illustrate the flexibility of their dependence model in a bi‐variate survival example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号