首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shi  Yushu  Laud  Purushottam  Neuner  Joan 《Lifetime data analysis》2021,27(1):156-176

In this paper, we first propose a dependent Dirichlet process (DDP) model using a mixture of Weibull models with each mixture component resembling a Cox model for survival data. We then build a Dirichlet process mixture model for competing risks data without regression covariates. Next we extend this model to a DDP model for competing risks regression data by using a multiplicative covariate effect on subdistribution hazards in the mixture components. Though built on proportional hazards (or subdistribution hazards) models, the proposed nonparametric Bayesian regression models do not require the assumption of constant hazard (or subdistribution hazard) ratio. An external time-dependent covariate is also considered in the survival model. After describing the model, we discuss how both cause-specific and subdistribution hazard ratios can be estimated from the same nonparametric Bayesian model for competing risks regression. For use with the regression models proposed, we introduce an omnibus prior that is suitable when little external information is available about covariate effects. Finally we compare the models’ performance with existing methods through simulations. We also illustrate the proposed competing risks regression model with data from a breast cancer study. An R package “DPWeibull” implementing all of the proposed methods is available at CRAN.

  相似文献   

2.
The case-cohort study design is widely used to reduce cost when collecting expensive covariates in large cohort studies with survival or competing risks outcomes. A case-cohort study dataset consists of two parts: (a) a random sample and (b) all cases or failures from a specific cause of interest. Clinicians often assess covariate effects on competing risks outcomes. The proportional subdistribution hazards model directly evaluates the effect of a covariate on the cumulative incidence function under the non-covariate-dependent censoring assumption for the full cohort study. However, the non-covariate-dependent censoring assumption is often violated in many biomedical studies. In this article, we propose a proportional subdistribution hazards model for case-cohort studies with stratified data with covariate-adjusted censoring weight. We further propose an efficient estimator when extra information from the other causes is available under case-cohort studies. The proposed estimators are shown to be consistent and asymptotically normal. Simulation studies show (a) the proposed estimator is unbiased when the censoring distribution depends on covariates and (b) the proposed efficient estimator gains estimation efficiency when using extra information from the other causes. We analyze a bone marrow transplant dataset and a coronary heart disease dataset using the proposed method.  相似文献   

3.
In medical studies, there is interest in inferring the marginal distribution of a survival time subject to competing risks. The Kyushu Lipid Intervention Study (KLIS) was a clinical study for hypercholesterolemia, where pravastatin treatment was compared with conventional treatment. The primary endpoint was time to events of coronary heart disease (CHD). In this study, however, some subjects died from causes other than CHD or were censored due to loss to follow-up. Because the treatments were targeted to reduce CHD events, the investigators were interested in the effect of the treatment on CHD events in the absence of causes of death or events other than CHD. In this paper, we present a method for estimating treatment group-specific marginal survival curves of time-to-event data in the presence of dependent competing risks. The proposed method is a straightforward extension of the Inverse Probability of Censoring Weighted (IPCW) method to settings with more than one reason for censoring. The results of our analysis showed that the IPCW marginal incidence for CHD was almost the same as the lower bound for which subjects with competing events were assumed to be censored at the end of all follow-up. This result provided reassurance that the results in KLIS were robust to competing risks.  相似文献   

4.
Absolute risk is the probability that a cause-specific event occurs in a given time interval in the presence of competing events. We present methods to estimate population-based absolute risk from a complex survey cohort that can accommodate multiple exposure-specific competing risks. The hazard function for each event type consists of an individualized relative risk multiplied by a baseline hazard function, which is modeled nonparametrically or parametrically with a piecewise exponential model. An influence method is used to derive a Taylor-linearized variance estimate for the absolute risk estimates. We introduce novel measures of the cause-specific influences that can guide modeling choices for the competing event components of the model. To illustrate our methodology, we build and validate cause-specific absolute risk models for cardiovascular and cancer deaths using data from the National Health and Nutrition Examination Survey. Our applications demonstrate the usefulness of survey-based risk prediction models for predicting health outcomes and quantifying the potential impact of disease prevention programs at the population level.  相似文献   

5.
In recent years, joint analysis of longitudinal measurements and survival data has received much attention. However, previous work has primarily focused on a single failure type for the event time. In this article, we consider joint modeling of repeated measurements and competing risks failure time data to allow for more than one distinct failure type in the survival endpoint so we fit a cause-specific hazards sub-model to allow for competing risks, with a separate latent association between longitudinal measurements and each cause of failure. Besides, previous work does not focus on the hypothesis to test a separate latent association between longitudinal measurements and each cause of failure. In this article, we derive a score test to identify longitudinal biomarkers or surrogates for a time to event outcome in competing risks data. With a carefully chosen definition of complete data, the maximum likelihood estimation of the cause-specific hazard functions is performed via an EM algorithm. We extend this work and allow random effects to be present in both the longitudinal biomarker and underlying survival function. The random effects in the biomarker are introduced via an explicit term while the random effect in the underlying survival function is introduced by the inclusion of frailty into the model.

We use simulations to explore how the number of individuals, the number of time points per individual and the functional form of the random effects from the longitudinal biomarkers considering heterogeneous baseline hazards in individuals influence the power to detect the association of a longitudinal biomarker and the survival time.  相似文献   


6.
In this paper, a class of tests is developed for comparing the cause-specific hazard rates of m competing risks simultaneously in K ( 2) groups. The data available for a unit are the failure time of the unit along with the identifier of the risk claiming the failure. In practice, the failure time data are generally right censored. The tests are based on the difference between the weighted averages of the cause-specific hazard rates corresponding to each risk. No assumption regarding the dependence of the competing risks is made. It is shown that the proposed test statistic has asymptotically chi-squared distribution. The proposed test is shown to be optimal for a specific type of local alternatives. The choice of weight function is also discussed. A simulation study is carried out using multivariate Gumbel distribution to compare the optimal weight function with a proposed weight function which is to be used in practice. Also, the proposed test is applied to real data on the termination of an intrauterine device.An erratum to this article can be found at  相似文献   

7.
Competing risks are common in clinical cancer research, as patients are subject to multiple potential failure outcomes, such as death from the cancer itself or from complications arising from the disease. In the analysis of competing risks, several regression methods are available for the evaluation of the relationship between covariates and cause-specific failures, many of which are based on Cox’s proportional hazards model. Although a great deal of research has been conducted on estimating competing risks, less attention has been devoted to linear regression modeling, which is often referred to as the accelerated failure time (AFT) model in survival literature. In this article, we address the use and interpretation of linear regression analysis with regard to the competing risks problem. We introduce two types of AFT modeling framework, where the influence of a covariate can be evaluated in relation to either a cause-specific hazard function, referred to as cause-specific AFT (CS-AFT) modeling in this study, or the cumulative incidence function of a particular failure type, referred to as crude-risk AFT (CR-AFT) modeling. Simulation studies illustrate that, as in hazard-based competing risks analysis, these two models can produce substantially different effects, depending on the relationship between the covariates and both the failure type of principal interest and competing failure types. We apply the AFT methods to data from non-Hodgkin lymphoma patients, where the dataset is characterized by two competing events, disease relapse and death without relapse, and non-proportionality. We demonstrate how the data can be analyzed and interpreted, using linear competing risks regression models.  相似文献   

8.
The standard log-rank test has been extended by adopting various weight functions. Cancer vaccine or immunotherapy trials have shown a delayed onset of effect for the experimental therapy. This is manifested as a delayed separation of the survival curves. This work proposes new weighted log-rank tests to account for such delay. The weight function is motivated by the time-varying hazard ratio between the experimental and the control therapies. We implement a numerical evaluation of the Schoenfeld approximation (NESA) for the mean of the test statistic. The NESA enables us to assess the power and to calculate the sample size for detecting such delayed treatment effect and also for a more general specification of the non-proportional hazards in a trial. We further show a connection between our proposed test and the weighted Cox regression. Then the average hazard ratio using the same weight is obtained as an estimand of the treatment effect. Extensive simulation studies are conducted to compare the performance of the proposed tests with the standard log-rank test and to assess their robustness to model mis-specifications. Our tests outperform the Gρ,γ class in general and have performance close to the optimal test. We demonstrate our methods on two cancer immunotherapy trials.  相似文献   

9.
In some applications, the clustered survival data are arranged spatially such as clinical centers or geographical regions. Incorporating spatial variation in these data not only can improve the accuracy and efficiency of the parameter estimation, but it also investigates the spatial patterns of survivorship for identifying high-risk areas. Competing risks in survival data concern a situation where there is more than one cause of failure, but only the occurrence of the first one is observable. In this paper, we considered Bayesian subdistribution hazard regression models with spatial random effects for the clustered HIV/AIDS data. An intrinsic conditional autoregressive (ICAR) distribution was employed to model the areal spatial random effects. Comparison among competing models was performed by the deviance information criterion. We illustrated the gains of our model through application to the HIV/AIDS data and the simulation studies.KEYWORDS: Competing risks, subdistribution hazard, cumulative incidence function, spatial random effect, Markov chain Monte Carlo  相似文献   

10.
In the competing risks literature, one usually compares whether two risks are equal or whether one is more serious. In this paper, we propose tests for the equality of two competing risks against an ordered alternative specified by their sub-survival functions. These tests are naturally developed as extensions of those based on hazard rates and cumulative incidence functions. We note that the interpretation of the new test results is more direct compared to the situation when the hypotheses are framed in terms of their cumulative incidence functions. The proposed tests are of the Kolmogrov–Smirnov type, based on maximum differences between sub-survival functions. Our simulation studies indicate that they are excellent competitors of the existing tests, that are based mainly on differences between cumulative incidence functions. A numerical example will demonstrate the advantages of the proposed tests.  相似文献   

11.
In survival and reliability studies, panel count data arise when we investigate a recurrent event process and each study subject is observed only at discrete time points. If recurrent events of several types are possible, we obtain panel count data with competing risks. Such data arise frequently from transversal studies on recurrent events in demography, epidemiology and reliability experiments where the individuals cannot be observed continuously. In the present paper, we propose an isotonic regression estimator for the cause specific mean function of the underlying recurrent event process of a competing risks panel count data. Further, a nonparametric test is proposed to compare the cause specific mean functions of the panel count competing risks data. Asymptotic properties of the proposed estimator and test statistic are studied. A simulation study is conducted to assess the finite sample behaviour of the proposed estimator and test statistic. Finally, the procedures developed are applied to a real data arising from skin cancer chemo prevention trial.  相似文献   

12.
Summary.  Competing risks situations can be encountered in many research areas such as medicine, social science and engineering. The main stream of analyses of those competing risks data has been nonparametric or semiparametric in the statistical literature. We propose a new parametric family to parameterize the cumulative incidence function completely. The new distribution is sufficiently flexible to fit various shapes of hazard patterns in survival data and increases the efficiency of the cumulative incidence estimates over the distribution-free approaches. A simple two-sample parametric test statistic is also proposed to compare the cumulative incidence functions between two groups at a given time point. The new parametric approach is illustrated by using breast cancer data sets from the National Surgical Adjuvant Breast and Bowel Project.  相似文献   

13.
ABSTRACT

On the basis of Csiszar's φ-divergence discrimination information, we propose a measure of discrepancy between equilibriums associated with two distributions. Proving that a distribution can be characterized by associated equilibrium distribution, a Renyi distance of the equilibrium distributions is constructed that made us to propose an EDF-based goodness-of-fit test for exponential distribution. For comparing the performance of the proposed test, some well-known EDF-based tests and some entropy-based tests are considered. Based on the simulation results, the proposed test has better powers than those of competing entropy-based tests for the alternatives with decreasing hazard rate function. The use of the proposed test is evaluated in an illustrative example.  相似文献   

14.
While analyzing 2 × 2 contingency tables, the log odds ratio for measuring the strength of association is often approximated by a normal distribution with some variance. We show that the expression of that variance needs to be modified in the presence of correlation between two binomial distributions of the contingency table. In the present paper, we derive a correlation-adjusted variance of the limiting normal distribution of log odds ratio. We also propose a correlation adjusted test based on the standard odds ratio for analyzing matched-pair studies and any other study settings that induce correlated binary outcomes. We demonstrate that our proposed test outperforms the classical McNemar’s test. Simulation studies show the gains in power are especially manifest when sample size is small and strong correlation is present. Two examples of real data sets are used to demonstrate that the proposed method may lead to conclusions significantly different from those reached using McNemar’s test.  相似文献   

15.
Typically, differences in the effect of treatment on competing risks are compared by a weighted log-rank test. This test compares the cause specific hazard rates between the groups. Often the test does not agree with the impressions gained from plots of the cumulative incidence functions. Here we discuss several K-sample tests allowing us to directly compare cumulative incidence functions. These include tests based on the weighted integrated difference between the subdistribution hazards or cumulative incidence functions, Kolmogorov-Smirnov type test, and Renyi type test. In addition to unadjusted comparison techniques, tests based on the regression modeling of the cumulative incidence functions are considered. A simulation study is used to compare the various tests and to assess their power against different alternatives. The methods are illustrated using real data examples.  相似文献   

16.
We introduce directed goodness-of-fit tests for Cox-type regression models in survival analysis. “Directed” means that one may choose against which alternatives the tests are particularly powerful. The tests are based on sums of weighted martingale residuals and their asymptotic distributions. We derive optimal tests against certain competing models which include Cox-type regression models with different covariates and/or a different link function. We report results from several simulation studies and apply our test to a real dataset.  相似文献   

17.

Joint models for longitudinal and survival data have gained a lot of attention in recent years, with the development of myriad extensions to the basic model, including those which allow for multivariate longitudinal data, competing risks and recurrent events. Several software packages are now also available for their implementation. Although mathematically straightforward, the inclusion of multiple longitudinal outcomes in the joint model remains computationally difficult due to the large number of random effects required, which hampers the practical application of this extension. We present a novel approach that enables the fitting of such models with more realistic computational times. The idea behind the approach is to split the estimation of the joint model in two steps: estimating a multivariate mixed model for the longitudinal outcomes and then using the output from this model to fit the survival submodel. So-called two-stage approaches have previously been proposed and shown to be biased. Our approach differs from the standard version, in that we additionally propose the application of a correction factor, adjusting the estimates obtained such that they more closely resemble those we would expect to find with the multivariate joint model. This correction is based on importance sampling ideas. Simulation studies show that this corrected two-stage approach works satisfactorily, eliminating the bias while maintaining substantial improvement in computational time, even in more difficult settings.

  相似文献   

18.
In this paper, we proposed a new three-parameter long-term lifetime distribution induced by a latent complementary risk framework with decreasing, increasing and unimodal hazard function, the long-term complementary exponential geometric distribution. The new distribution arises from latent competing risk scenarios, where the lifetime associated scenario, with a particular risk, is not observable, rather we observe only the maximum lifetime value among all risks, and the presence of long-term survival. The properties of the proposed distribution are discussed, including its probability density function and explicit algebraic formulas for its reliability, hazard and quantile functions and order statistics. The parameter estimation is based on the usual maximum-likelihood approach. A simulation study assesses the performance of the estimation procedure. We compare the new distribution with its particular cases, as well as with the long-term Weibull distribution on three real data sets, observing its potential and competitiveness in comparison with some usual long-term lifetime distributions.  相似文献   

19.
Competing risks often occur when subjects may fail from one of several mutually exclusive causes. For example, when a patient suffering a cancer may die from other cause, we are interested in the effect of a certain covariate on the probability of dying of cancer at a certain time. Several approaches have been suggested to analyse competing risk data in the presence of complete information of failure cause. In this paper, our interest is to consider the occurrence of missing causes as well as interval censored failure time. There exist no method to discuss this problem. We applied a Klein–Andersen's pseudo-value approach [Klein, JP Andersen PK. Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function. Biometrics. 2005;61:223–229] based on the estimated cumulative incidence function and a regression coefficient is estimated through a multiple imputation. We evaluate the suggested method by comparing with a complete case analysis in several simulation settings.  相似文献   

20.
The cumulative incidence function is of great importance in the analysis of survival data when competing risks are present. Parametric modeling of such functions, which are by nature improper, suggests the use of improper distributions. One frequently used improper distribution is that of Gompertz, which captures only monotone hazard shapes. In some applications, however, subdistribution hazard estimates have been observed with unimodal shapes. An extension to the Gompertz distribution is presented which can capture unimodal as well as monotone hazard shapes. Important properties of the proposed distribution are discussed, and the proposed distribution is used to analyze survival data from a breast cancer clinical trial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号