首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract.  We consider marginal semiparametric partially linear models for longitudinal/clustered data and propose an estimation procedure based on a spline approximation of the non-parametric part of the model and an extension of the parametric marginal generalized estimating equations (GEE). Our estimates of both parametric part and non-parametric part of the model have properties parallel to those of parametric GEE, that is, the estimates are efficient if the covariance structure is correctly specified and they are still consistent and asymptotically normal even if the covariance structure is misspecified. By showing that our estimate achieves the semiparametric information bound, we actually establish the efficiency of estimating the parametric part of the model in a stronger sense than what is typically considered for GEE. The semiparametric efficiency of our estimate is obtained by assuming only conditional moment restrictions instead of the strict multivariate Gaussian error assumption.  相似文献   

2.
The statistical literature on the analysis of discrete variate time series has concentrated mainly on parametric models, that is the conditional probability mass function is assumed to belong to a parametric family. Generally, these parametric models impose strong assumptions on the relationship between the conditional mean and variance. To generalize these implausible assumptions, this paper instead considers a more realistic semiparametric model, called random rounded integer-valued autoregressive conditional heteroskedastic (RRINARCH) model, where there are essentially no assumptions on the relationship between the conditional mean and variance. The new model has several advantages: (a) it provides a coherent semiparametric framework for discrete variate time series, in which the conditional mean and variance can be modeled separately; (b) it allows negative values both for the series and its autocorrelation function; (c) its autocorrelation structure is the same as that of a standard autoregressive (AR) process; (d) standard software for its estimation is directly applicable. For the new model, conditions for stationarity, ergodicity and the existence of moments are established and the consistency and asymptotic normality of the conditional least squares estimator are proved. Simulation experiments are carried out to assess the performance of the model. The analyses of real data sets illustrate the flexibility and usefulness of the RRINARCH model for obtaining more realistic forecast means and variances.  相似文献   

3.
Abstract

In this article we develop the minimax estimation approach of general linear models to the semiparametric linear models when the parameters are simultaneously constrained by an ellipsoid and linear restrictions. Combining sample information and prior constraints the minimax estimator is obtained and compared with partially least square estimator by theoretical and simulation methods.  相似文献   

4.
ABSTRACT

We consider semiparametric inference on the partially linearsingle-index model (PLSIM). The generalized likelihood ratio (GLR) test is proposed to examine whether or not a family of new semiparametric models fits adequately our given data in the PLSIM. A new GLR statistic is established to deal with the testing of the index parameter α0 in the PLSIM. The newly proposed statistic is shown to asymptotically follow a χ2-distribution with the scale constant and the degrees of freedom being independent of the nuisance parameters or function. Some finite sample simulations and a real example are used to illustrate our proposed methodology.  相似文献   

5.
Abstract

This study concerns semiparametric approaches to estimate discrete multivariate count regression functions. The semiparametric approaches investigated consist of combining discrete multivariate nonparametric kernel and parametric estimations such that (i) a prior knowledge of the conditional distribution of model response may be incorporated and (ii) the bias of the traditional nonparametric kernel regression estimator of Nadaraya-Watson may be reduced. We are precisely interested in combination of the two estimations approaches with some asymptotic properties of the resulting estimators. Asymptotic normality results were showed for nonparametric correction terms of parametric start function of the estimators. The performance of discrete semiparametric multivariate kernel estimators studied is illustrated using simulations and real count data. In addition, diagnostic checks are performed to test the adequacy of the parametric start model to the true discrete regression model. Finally, using discrete semiparametric multivariate kernel estimators provides a bias reduction when the parametric multivariate regression model used as start regression function belongs to a neighborhood of the true regression model.  相似文献   

6.
Abstract.  This paper describes our studies on non-parametric maximum-likelihood estimators in a semiparametric mixture model for competing-risks data, in which proportional hazards models are specified for failure time models conditional on cause and a multinomial model is specified for the marginal distribution of cause conditional on covariates. We provide a verifiable identifiability condition and, based on it, establish an asymptotic profile likelihood theory for this model. We also provide efficient algorithms for the computation of the non-parametric maximum-likelihood estimate and its asymptotic variance. The success of this method is demonstrated in simulation studies and in the analysis of Taiwan severe acute respiratory syndrome data.  相似文献   

7.
In this paper, semiparametric methods are applied to estimate multivariate volatility functions, using a residual approach as in [J. Fan and Q. Yao, Efficient estimation of conditional variance functions in stochastic regression, Biometrika 85 (1998), pp. 645–660; F.A. Ziegelmann, Nonparametric estimation of volatility functions: The local exponential estimator, Econometric Theory 18 (2002), pp. 985–991; F.A. Ziegelmann, A local linear least-absolute-deviations estimator of volatility, Comm. Statist. Simulation Comput. 37 (2008), pp. 1543–1564], among others. Our main goal here is two-fold: (1) describe and implement a number of semiparametric models, such as additive, single-index and (adaptive) functional-coefficient, in volatility estimation, all motivated as alternatives to deal with the curse of dimensionality present in fully nonparametric models; and (2) propose the use of a variation of the traditional cross-validation method to deal with model choice in the class of adaptive functional-coefficient models, choosing simultaneously the bandwidth, the number of covariates in the model and also the single-index smoothing variable. The modified cross-validation algorithm is able to tackle the computational burden caused by the model complexity, providing an important tool in semiparametric volatility estimation. We briefly discuss model identifiability when estimating volatility as well as nonnegativity of the resulting estimators. Furthermore, Monte Carlo simulations for several underlying generating models are implemented and applications to real data are provided.  相似文献   

8.
We consider functional measurement error models, i.e. models where covariates are measured with error and yet no distributional assumptions are made about the mismeasured variable. We propose and study a score-type local test and an orthogonal series-based, omnibus goodness-of-fit test in this context, where no likelihood function is available or calculated-i.e. all the tests are proposed in the semiparametric model framework. We demonstrate that our tests have optimality properties and computational advantages that are similar to those of the classical score tests in the parametric model framework. The test procedures are applicable to several semiparametric extensions of measurement error models, including when the measurement error distribution is estimated non-parametrically as well as for generalized partially linear models. The performance of the local score-type and omnibus goodness-of-fit tests is demonstrated through simulation studies and analysis of a nutrition data set.  相似文献   

9.
《Econometric Reviews》2013,32(3):229-257
Abstract

We obtain semiparametric efficiency bounds for estimation of a location parameter in a time series model where the innovations are stationary and ergodic conditionally symmetric martingale differences but otherwise possess general dependence and distributions of unknown form. We then describe an iterative estimator that achieves this bound when the conditional density functions of the sample are known. Finally, we develop a “semi-adaptive” estimator that achieves the bound when these densities are unknown by the investigator. This estimator employs nonparametric kernel estimates of the densities. Monte Carlo results are reported.  相似文献   

10.
In many applications, statistical data are frequently observed subject to a retrospective sampling criterion resulting in right-truncated data. In this article, a general class of semiparametric transformation models that include proportional hazards model and proportional odds model as special cases is studied for the analysis of right-truncated data. We proposed two estimators for regression coefficients. The first estimator is based on martingale estimating equations. The second estimator is based on the conditional likelihood function given the truncation times. The asymptotic properties of both estimators are derived. The finite sample performance is examined through a simulation study.  相似文献   

11.
Abstract

In this paper we are concerned with variable selection in finite mixture of semiparametric regression models. This task consists of model selection for non parametric component and variable selection for parametric part. Thus, we encountered separate model selections for every non parametric component of each sub model. To overcome this computational burden, we introduced a class of variable selection procedures for finite mixture of semiparametric regression models using penalized approach for variable selection. It is shown that the new method is consistent for variable selection. Simulations show that the performance of proposed method is good, and it consequently improves pervious works in this area and also requires much less computing power than existing methods.  相似文献   

12.
We consider a partially linear model in which the vector of coefficients β in the linear part can be partitioned as ( β 1, β 2) , where β 1 is the coefficient vector for main effects (e.g. treatment effect, genetic effects) and β 2 is a vector for ‘nuisance’ effects (e.g. age, laboratory). In this situation, inference about β 1 may benefit from moving the least squares estimate for the full model in the direction of the least squares estimate without the nuisance variables (Steinian shrinkage), or from dropping the nuisance variables if there is evidence that they do not provide useful information (pretesting). We investigate the asymptotic properties of Stein‐type and pretest semiparametric estimators under quadratic loss and show that, under general conditions, a Stein‐type semiparametric estimator improves on the full model conventional semiparametric least squares estimator. The relative performance of the estimators is examined using asymptotic analysis of quadratic risk functions and it is found that the Stein‐type estimator outperforms the full model estimator uniformly. By contrast, the pretest estimator dominates the least squares estimator only in a small part of the parameter space, which is consistent with the theory. We also consider an absolute penalty‐type estimator for partially linear models and give a Monte Carlo simulation comparison of shrinkage, pretest and the absolute penalty‐type estimators. The comparison shows that the shrinkage method performs better than the absolute penalty‐type estimation method when the dimension of the β 2 parameter space is large.  相似文献   

13.
The performance of nonparametric function estimates often depends on the choice of design points. Based on the mean integrated squared error criterion, we propose a sequential design procedure that updates the model knowledge and optimal design density sequentially. The methodology is developed under a general framework covering a wide range of nonparametric inference problems, such as conditional mean and variance functions, the conditional distribution function, the conditional quantile function in quantile regression, functional coefficients in varying coefficient models and semiparametric inferences. Based on our empirical studies, nonparametric inference based on the proposed sequential design is more efficient than the uniform design and its performance is close to the true but unknown optimal design. The Canadian Journal of Statistics 40: 362–377; 2012 © 2012 Statistical Society of Canada  相似文献   

14.
Semiparametric Bayesian models are nowadays a popular tool in event history analysis. An important area of research concerns the investigation of frequentist properties of posterior inference. In this paper, we propose novel semiparametric Bayesian models for the analysis of competing risks data and investigate the Bernstein–von Mises theorem for differentiable functionals of model parameters. The model is specified by expressing the cause-specific hazard as the product of the conditional probability of a failure type and the overall hazard rate. We take the conditional probability as a smooth function of time and leave the cumulative overall hazard unspecified. A prior distribution is defined on the joint parameter space, which includes a beta process prior for the cumulative overall hazard. We first develop the large-sample properties of maximum likelihood estimators by giving simple sufficient conditions for them to hold. Then, we show that, under the chosen priors, the posterior distribution for any differentiable functional of interest is asymptotically equivalent to the sampling distribution derived from maximum likelihood estimation. A simulation study is provided to illustrate the coverage properties of credible intervals on cumulative incidence functions.  相似文献   

15.
We propose data generating structures which can be represented as the nonlinear autoregressive models with single and finite mixtures of scale mixtures of skew normal innovations. This class of models covers symmetric/asymmetric and light/heavy-tailed distributions, so provide a useful generalization of the symmetrical nonlinear autoregressive models. As semiparametric and nonparametric curve estimation are the approaches for exploring the structure of a nonlinear time series data set, in this article the semiparametric estimator for estimating the nonlinear function of the model is investigated based on the conditional least square method and nonparametric kernel approach. Also, an Expectation–Maximization-type algorithm to perform the maximum likelihood (ML) inference of unknown parameters of the model is proposed. Furthermore, some strong and weak consistency of the semiparametric estimator in this class of models are presented. Finally, to illustrate the usefulness of the proposed model, some simulation studies and an application to real data set are considered.  相似文献   

16.
Abstract

We propose to compare population means and variances under a semiparametric density ratio model. The proposed method is easy to implement by employing logistic regression procedures in many statistical software, and it often works very well when data are not normal. In this paper, we construct semiparametric estimators of the differences of two population means and variances, and derive their asymptotic distributions. We prove that the proposed semiparametric estimators are asymptotically more efficient than the corresponding non parametric ones. In addition, a simulation study and the analysis of two real data sets are presented. Finally, a short discussion is provided.  相似文献   

17.
Left-truncated data often arise in epidemiology and individual follow-up studies due to a biased sampling plan since subjects with shorter survival times tend to be excluded from the sample. Moreover, the survival time of recruited subjects are often subject to right censoring. In this article, a general class of semiparametric transformation models that include proportional hazards model and proportional odds model as special cases is studied for the analysis of left-truncated and right-censored data. We propose a conditional likelihood approach and develop the conditional maximum likelihood estimators (cMLE) for the regression parameters and cumulative hazard function of these models. The derived score equations for regression parameter and infinite-dimensional function suggest an iterative algorithm for cMLE. The cMLE is shown to be consistent and asymptotically normal. The limiting variances for the estimators can be consistently estimated using the inverse of negative Hessian matrix. Intensive simulation studies are conducted to investigate the performance of the cMLE. An application to the Channing House data is given to illustrate the methodology.  相似文献   

18.
In this paper, we consider joint modelling of repeated measurements and competing risks failure time data. For competing risks time data, a semiparametric mixture model in which proportional hazards model are specified for failure time models conditional on cause and a multinomial model for the marginal distribution of cause conditional on covariates. We also derive a score test based on joint modelling of repeated measurements and competing risks failure time data to identify longitudinal biomarkers or surrogates for a time to event outcome in competing risks data.  相似文献   

19.
This paper presents a Bayesian analysis of partially linear additive models for quantile regression. We develop a semiparametric Bayesian approach to quantile regression models using a spectral representation of the nonparametric regression functions and the Dirichlet process (DP) mixture for error distribution. We also consider Bayesian variable selection procedures for both parametric and nonparametric components in a partially linear additive model structure based on the Bayesian shrinkage priors via a stochastic search algorithm. Based on the proposed Bayesian semiparametric additive quantile regression model referred to as BSAQ, the Bayesian inference is considered for estimation and model selection. For the posterior computation, we design a simple and efficient Gibbs sampler based on a location-scale mixture of exponential and normal distributions for an asymmetric Laplace distribution, which facilitates the commonly used collapsed Gibbs sampling algorithms for the DP mixture models. Additionally, we discuss the asymptotic property of the sempiparametric quantile regression model in terms of consistency of posterior distribution. Simulation studies and real data application examples illustrate the proposed method and compare it with Bayesian quantile regression methods in the literature.  相似文献   

20.
This article proposes a semiparametric estimator of the parameter in a conditional duration model when there are inequality constraints on some parameters and the error distribution may be unknown. We propose to estimate the parameter by a constrained version of an unrestricted semiparametrically efficient estimator. The main requirement for applying this method is that the initial unrestricted estimator converges in distribution. Apart from this, additional regularity conditions on the data generating process or the likelihood function, are not required. Hence the method is applicable to a broad range of models where the parameter space is constrained by inequality constraints, such as the conditional duration models. In a simulation study involving conditional duration models, the overall performance of the constrained estimator was better than its competitors, in terms of mean squared error. A data example is used to illustrate the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号