首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
It is known that functional single-index regression models can achieve better prediction accuracy than functional linear models or fully nonparametric models, when the target is to predict a scalar response using a function-valued covariate. However, the performance of these models may be adversely affected by extremely large values or skewness in the response. In addition, they are not able to offer a full picture of the conditional distribution of the response. Motivated by using trajectories of $$\hbox {PM}_{{10}}$$ concentrations of last day to predict the maximum $$\hbox {PM}_{{10}}$$ concentration of the current day, a functional single-index quantile regression model is proposed to address those issues. A generalized profiling method is employed to estimate the model. Simulation studies are conducted to investigate the finite sample performance of the proposed estimator. We apply the proposed framework to predict the maximal value of $$\hbox {PM}_{{10}}$$ concentrations based on the intraday $$\hbox {PM}_{{10}}$$ concentrations of the previous day.  相似文献   

3.
LetF(x,y) be a distribution function of a two dimensional random variable (X,Y). We assume that a distribution functionF x(x) of the random variableX is known. The variableX will be called an auxiliary variable. Our purpose is estimation of the expected valuem=E(Y) on the basis of two-dimensional simple sample denoted by:U=[(X 1, Y1)…(Xn, Yn)]=[X Y]. LetX=[X 1X n]andY=[Y 1Y n].This sample is drawn from a distribution determined by the functionF(x,y). LetX (k)be the k-th (k=1, …,n) order statistic determined on the basis of the sampleX. The sampleU is truncated by means of this order statistic into two sub-samples: % MathType!End!2!1! and % MathType!End!2!1!.Let % MathType!End!2!1! and % MathType!End!2!1! be the sample means from the sub-samplesU k,1 andU k,2, respectively. The linear combination % MathType!End!2!1! of these means is the conditional estimator of the expected valuem. The coefficients of this linear combination depend on the distribution function of auxiliary variable in the pointx (k).We can show that this statistic is conditionally as well as unconditionally unbiased estimator of the averagem. The variance of this estimator is derived. The variance of the statistic % MathType!End!2!1! is compared with the variance of the order sample mean. The generalization of the conditional estimation of the mean is considered, too.  相似文献   

4.
In this paper we introduce the distribution of , with c >  0, where X i , i =  1, 2, are independent generalized beta-prime-distributed random variables, and establish a closed form expression of its density. This distribution has as its limiting case the generalized beta type I distribution recently introduced by Nadarajah and Kotz (2004). Due to the presence of several parameters the density can take a wide variety of shapes.   相似文献   

5.
Statistics and Computing - We propose the Laplace method to derive approximate inference for Gaussian process (GP) regression in the location and scale parameters of the student- $$ {t}$$...  相似文献   

6.
Quantile regression (QR) is becoming increasingly popular due to its relevance in many scientific investigations. There is a great amount of work about linear and nonlinear QR models. Specifically, nonparametric estimation of the conditional quantiles received particular attention, due to its model flexibility. However, nonparametric QR techniques are limited in the number of covariates. Dimension reduction offers a solution to this problem by considering low-dimensional smoothing without specifying any parametric or nonparametric regression relation. The existing dimension reduction techniques focus on the entire conditional distribution. We, on the other hand, turn our attention to dimension reduction techniques for conditional quantiles and introduce a new method for reducing the dimension of the predictor $$\mathbf {X}$$. The novelty of this paper is threefold. We start by considering a single index quantile regression model, which assumes that the conditional quantile depends on $$\mathbf {X}$$ through a single linear combination of the predictors, then extend to a multi-index quantile regression model, and finally, generalize the proposed methodology to any statistical functional of the conditional distribution. The performance of the methodology is demonstrated through simulation examples and real data applications. Our results suggest that this method has a good finite sample performance and often outperforms the existing methods.  相似文献   

7.
Statistics and Computing - The worst case integration error in reproducing kernel Hilbert spaces of standard Monte Carlo methods with n random points decays as $$n^{-1/2}$$. However, the...  相似文献   

8.
9.
Estimation of a normal mean relative to balanced loss functions   总被引:3,自引:0,他引:3  
LetX 1,…,X nbe a random sample from a normal distribution with mean θ and variance σ2. The problem is to estimate θ with Zellner's (1994) balanced loss function, % MathType!End!2!1!, where 0<ω<1. It is shown that the sample mean % MathType!End!2!1!, is admissible. More generally, we investigate the admissibility of estimators of the form % MathType!End!2!1! under % MathType!End!2!1!. We also consider the weighted balanced loss function, % MathType!End!2!1!, whereq(θ) is any positive function of θ, and the class of admissible linear estimators is obtained under such loss withq(θ) =e θ .  相似文献   

10.
We develop a framework that allows the use of the multi-level Monte Carlo (MLMC) methodology (Giles in Acta Numer. 24:259–328, 2015. https://doi.org/10.1017/S096249291500001X) to calculate expectations with respect to the invariant measure of an ergodic SDE. In that context, we study the (over-damped) Langevin equations with a strongly concave potential. We show that when appropriate contracting couplings for the numerical integrators are available, one can obtain a uniform-in-time estimate of the MLMC variance in contrast to the majority of the results in the MLMC literature. As a consequence, a root mean square error of $$\mathcal {O}(\varepsilon )$$ is achieved with $$\mathcal {O}(\varepsilon ^{-2})$$ complexity on par with Markov Chain Monte Carlo (MCMC) methods, which, however, can be computationally intensive when applied to large datasets. Finally, we present a multi-level version of the recently introduced stochastic gradient Langevin dynamics method (Welling and Teh, in: Proceedings of the 28th ICML, 2011) built for large datasets applications. We show that this is the first stochastic gradient MCMC method with complexity $$\mathcal {O}(\varepsilon ^{-2}|\log {\varepsilon }|^{3})$$, in contrast to the complexity $$\mathcal {O}(\varepsilon ^{-3})$$ of currently available methods. Numerical experiments confirm our theoretical findings.  相似文献   

11.
D. Plachky 《Statistics》2013,47(2):139-146
Let (\Omega,{\cal A},{\cal P}) stand for a statistical experiment and {\cal B},{\cal C} for some sub- σ -algebras of {\cal A} with {\cal C}\subset {\cal B} . It is shown that for any {\cal B} -measurable d\in\bigcap_{P\in {\cal P}}\,{\cal L}_{2}(\Omega,{\cal A},P) there exists some d_{1}\in\bigcap_{P\in {\cal P}}{\cal L}_{2}(\Omega,{\cal A},P) being {\cal C} -measurable and a UMVU estimator in (\Omega,{\cal A},{\cal P}) and some conditional white noise d_{2}\in\bigcap_{P\in {\cal P}}\,{\cal L}_{2}(\Omega,{\cal A},P) , i.e. E_{P}(d_{2}\vert {\cal C})=0,P\in {\cal P} , satisfying d=d_{1}+d_{2} , where d_{j},j=1,2 , are uniquely determined up to P -zero sets, if and only if {\cal C} is sufficient and complete for {\cal P}\vert {\cal B} and {\cal B} is optimality robust for {\cal P} , i.e. any {\cal B} -measurable d\in\bigcap_{P\in {\cal P}}\,{\cal L}_{2}(\Omega,{\cal A},P) being some UMVU estimator in the restricted statistical experiment (\Omega,{\cal B},{\cal P}\vert {\cal B}) is already a UMVU estimator in the original statistical experiment (\Omega,{\cal A},{\cal P}) . In particular, the special case {\cal B}={\cal A} characterizes sufficiency and completeness of {\cal C} for {\cal P} and the special case {\cal B}={\cal C} optimality robustness and completeness of {\cal C} for {\cal P} from a decomposition theoretical point of view. As an application it is shown that a σ -algebra containing a sufficient and complete sub- σ -algebra is optimality robust without being itself in general neither sufficient nor complete.  相似文献   

12.
Gnot et al. (J Statist Plann Inference 30(1):223–236, 1992) have presented the formulae for computing Bayes invariant quadratic estimators of variance components in normal mixed linear models of the form where the matrices V i , 1 ≤ ik − 1, are symmetric and nonnegative definite and V k is an identity matrix. These formulae involve a basis of a quadratic subspace containing MV 1 M,...,MV k-1 M,M, where M is an orthogonal projector on the null space of X′. In the paper we discuss methods of construction of such a basis. We survey Malley’s algorithms for finding the smallest quadratic subspace including a given set of symmetric matrices of the same order and propose some modifications of these algorithms. We also consider a class of matrices sharing some of the symmetries common to MV 1 M,...,MV k-1 M,M. We show that the matrices from this class constitute a quadratic subspace and describe its explicit basis, which can be directly used for computing Bayes invariant quadratic estimators of variance components. This basis can be also used for improving the efficiency of Malley’s algorithms when applied to finding a basis of the smallest quadratic subspace containing the matrices MV 1 M,...,MV k-1 M,M. Finally, we present the results of a numerical experiment which confirm the potential usefulness of the proposed methods. Dedicated to the memory of Professor Stanisław Gnot.  相似文献   

13.
R. Göb 《Statistical Papers》1992,33(1):273-277
In elementary probability theory, as a result of a limiting process the probabilities of aBi(n, p) binomial distribution are approximated by the probabilities of aPo(np) Poisson distribution. Accordingly, in statistical quality control the binomial operating characteristic function \(\mathcal{L}_{n,c} (p)\) is approximated by the Poisson operating characteristic function \(\mathcal{F}_{n,c} (p)\) . The inequality \(\mathcal{L}_{n + 1,c + 1} (p) > \mathcal{L}_{n,c} (p)\) forp∈(0;1) is evident from the interpretation of \(\mathcal{L}_{n + 1,c + 1} (p)\) , \(\mathcal{L}_{n,c} (p)\) as probabilities of accepting a lot. It is shown that the Poisson approximation \(\mathcal{F}_{n,c} (p)\) preserves this essential feature of the binomial operating characteristic function, i.e. that an analogous inequality holds for the Poisson operating characteristic function, too.  相似文献   

14.
Let (X1, X2, Y1, Y2) be a four dimensional random variable having the joint probability density function f(x1, x2, y1, y2). In this paper we consider the problem of estimating the regression function \({{E[(_{Y_2 }^{Y_1 } )} \mathord{\left/ {\vphantom {{E[(_{Y_2 }^{Y_1 } )} {_{X_2 = X_2 }^{X_1 = X_1 } }}} \right. \kern-0em} {_{X_2 = X_2 }^{X_1 = X_1 } }}]\) on the basis of a random sample of size n. We have proved that under certain regularity conditions the kernel estimate of this regression function is uniformly strongly consistent. We have also shown that under certain conditions the estimate is asymptotically normally distributed.  相似文献   

15.
Essential graphs and largest chain graphs are well-established graphical representations of equivalence classes of directed acyclic graphs and chain graphs respectively, especially useful in the context of model selection. Recently, the notion of a labelled block ordering of vertices was introduced as a flexible tool for specifying subfamilies of chain graphs. In particular, both the family of directed acyclic graphs and the family of “unconstrained” chain graphs can be specified in this way, for the appropriate choice of . The family of chain graphs identified by a labelled block ordering of vertices is partitioned into equivalence classes each represented by means of a -essential graph. In this paper, we introduce a topological ordering of meta-arrows and use this concept to devise an efficient procedure for the construction of -essential graphs. In this way we also provide an efficient procedure for the construction of both largest chain graphs and essential graphs. The key feature of the proposed procedure is that every meta-arrow needs to be processed only once.  相似文献   

16.
Perfect simulation of positive Gaussian distributions   总被引:1,自引:0,他引:1  
We provide an exact simulation algorithm that produces variables from truncated Gaussian distributions on ( +) p via a perfect sampling scheme, based on stochastic ordering and slice sampling, since accept-reject algorithms like the one of Geweke (1991) and Robert (1995) are difficult to extend to higher dimensions.  相似文献   

17.
We consider the Lindeberg-Feller model for independent random variables and focus our attention on the behaviour of the probability densities q_{n} of sums S_{n}, n\geq 1 . We obtain a theorem on the convergence of q_{n} to the standard normal density \varphi which resembles the well known limit theorem for distribution functions--provided that the q_{n} are positive definite. A special case is the following: if q_{n}(0)\rightarrow\varphi(0) as n\rightarrow\infty then the Lindeberg condition guarantees that the convergence of q_{n} to \varphi continues to the real line.  相似文献   

18.
Summary In this paper likelihood is characterized as an index which measures how much a model fits a sample. Some properties required to an index of fit are introduced and discussed, while stressing how they describe aspects inner to idea of fit. Finally we prove that, if an index of fit is maximal when the model reaches the distribution of the sample, then such an index is an increasing continuous transform of , where thep i's are the theoretical relative frequencies provided by the model and theq i's are the actual relative frequencies of the sample.  相似文献   

19.
20.
The structure of a stopping variable N based on one-sided CUSUM procedures is analyzed. Stopping occurs when a Markovian sequence of maxima of partial sums {M } crosses a certain boundary. On the basis of a recursive relationship between the Mn+1 and Mn a recursive equation is derived for the determination of the defective distributions Kn(x) = P{M ≤ x, N ≤n} . This recursive equation yields a recursive algorithm for the determination of P {N > n} . The paper studies the case when the basic random variables are non-negative integers-valued. In these cases the values of P{N > n} and E{N} can be determined by solving proper systems of linear equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号