首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
ABSTRACT

The EWMA control chart is used to detect small shifts in a process. It has been shown that, for certain values of the smoothing parameter, the EWMA chart for the mean is robust to non normality. In this article, we examine the case of non normality in the EWMA charts for the dispersion. It is shown that we can have an EWMA chart for dispersion robust to non normality when non normality is not extreme.  相似文献   

3.
In a process, the deviation from location or scale parameters affects the quality of the process and waste resources. So it is essential to monitor such processes for possible changes due to any assignable causes. Control charts are the most famous tool used to meet this intention. It is useless to monitor process location until the assurance that process dispersion is in-control. This study proposes some new two-sided memory control charts named as progressive variance (PV) control charts which are based on sample variance to monitor changes in process dispersion assuming normality of quality characteristic to be monitored. Simulation studies are made, and an example is discussed to evaluate the performance of the proposed charts. The comparison of the proposed chart is made with exponentially weighted moving average- and cumulative sum-type charts for process dispersion. The study shows that performance of the proposed charts are uniformly better than its competitors for detecting positive shifts while for detecting negative shift in the variance their performance is better for small shifts and reasonably good for moderated shifts.  相似文献   

4.
The Shewhart R control chart and s control chart are widely used to monitor shifts in the process spread. One fact is that the distributions of the range and sample standard deviation are highly skewed. Therefore, the R chart and s chart neither provide an in-control average run length (ARL) of approximately 370 nor guarantee the desired type I error of 0.0027. Another disadvantage of these two charts is their failure in detecting an improvement in the process variability. In order to overcome these shortcomings, we propose the improved R chart (IRC) and s chart (ISC) with accurate approximation of the control limits by using cumulative distribution functions of the sample range and standard deviation. Simulation studies show that the IRC and ISC perform very well. We also compare the type II error risks and ARLs of the IRC and ISC and found that the s chart is generally more efficient than the R chart. Examples are given to illustrate the use of the developed charts.  相似文献   

5.
For the univariate case, the R chart and the S 2 chart are the most common charts used for monitoring the process dispersion. With the usual sample size of 4 and 5, the R chart is slightly inferior to the S 2 chart in terms of efficiency in detecting process shifts. In this article, we show that for the multivariate case, the chart based on the standardized sample ranges, we call the RMAX chart, is substantially inferior in terms of efficiency in detecting shifts in the covariance matrix than the VMAX chart, which is based on the standardized sample variances. The user's familiarity with sample ranges is a point in favor of the RMAX chart. An example is presented to illustrate the application of the proposed chart.  相似文献   

6.
Control chart is the most important statistical process control tool used to monitor changes in process location and dispersion. In this study, an EWMA control chart is proposed for efficient and robust monitoring of process dispersion. The proposed chart, namely the MDEWMA chart, is based on estimating the process standard deviation (σ) using the mean absolute deviations (MD), taken from the sample median. The performance of the proposed chart has been compared with the EWMASR chart (a dispersion EWMA chart based on sample range) and MD chart (a Shewhart-type dispersion chart based on MD), under the existence and violation of normality assumption. It has been observed that the proposed MDEWMA chart is more efficient and robust when compared with both EWMASR and MD charts in terms of run length (RL) characteristics such as average RL, median RL and standard deviation of the RL distribution.  相似文献   

7.
Traditional control charts assume independence of observations obtained from the monitored process. However, if the observations are autocorrelated, these charts often do not perform as intended by the design requirements. Recently, several control charts have been proposed to deal with autocorrelated observations. The residual chart, modified Shewhart chart, EWMAST chart, and ARMA chart are such charts widely used for monitoring the occurrence of assignable causes in a process when the process exhibits inherent autocorrelation. Besides autocorrelation, one other issue is the unknown values of true process parameters to be used in the control chart design, which are often estimated from a reference sample of in-control observations. Performances of the above-mentioned control charts for autocorrelated processes are significantly affected by the sample size used in a Phase I study to estimate the control chart parameters. In this study, we investigate the effect of Phase I sample size on the run length performance of these four charts for monitoring the changes in the mean of an autocorrelated process, namely an AR(1) process. A discussion of the practical implications of the results and suggestions on the sample size requirements for effective process monitoring are provided.  相似文献   

8.
ABSTRACT

Control charts are the frequently used tools for monitoring and controlling the processes. Classical control charts are sensitive to existing contaminated data which may be presented in the data collected from the processes. Thus, these charts are not able to control the processes precisely when the data are contaminated. Robust control charts are those which are less sensitive to contamination. Some robust control charts for monitoring the process variability were proposed in the past which are robust to some sorts of contamination. In this paper a new robust R control chart is proposed which is less sensitive to wide range of contaminations, i.e. general and local contaminations. Simulation studies are performed to compare the performance of the proposed control chart with some classical and robust control charts, using ARL and MSD as criteria for comparisons purposes. The simulation results show a very good performance of the proposed chart when both types of contaminations exist.  相似文献   

9.
A fast initial response (FIR) feature for the run sum R chart is proposed and its ARL performance estimated by a Markov chain representation. It is shown that this chart is more sensitive than several R charts with runs rules proposed by different authors. We conclude that the run sum R chart is simple to use and a very effective tool for monitoring increases and decreases in process dispersion.  相似文献   

10.
The exponentially weighted moving average (EWMA) control charts with variable sampling intervals (VSIs) have been shown to be substantially quicker than the fixed sampling intervals (FSI) EWMA control charts in detecting process mean shifts. The usual assumption for designing a control chart is that the data or measurements are normally distributed. However, this assumption may not be true for some processes. In the present paper, the performances of the EWMA and combined –EWMA control charts with VSIs are evaluated under non-normality. It is shown that adding the VSI feature to the EWMA control charts results in very substantial decreases in the expected time to detect shifts in process mean under both normality and non-normality. However, the combined –EWMA chart has its false alarm rate and its detection ability is affected if the process data are not normally distributed.  相似文献   

11.
The standard S chart signals an out-of-control condition when one point exceeds a control limit. It can be augmented with runs rules to improve its performance in detecting assignable causes. A commonly used rule signals when k consecutive points exceed a control limit. This rule can be used alone or to supplement the standard chart. In this article we derive ARL expressions for charts with the k-of-k runs rule. We show how to design S charts with this runs rule, compare their ARL performance, and make a control chart recommendation when it is important to monitor for both increases and decreases in process dispersion.  相似文献   

12.
This study proposes a synthetic double sampling s chart that integrates the double sampling (DS) s chart and the conforming run length chart. An optimization procedure is proposed to compute the optimal parameters of the synthetic DS s chart. The performance of the synthetic DS s chart is compared with other existing control charts for monitoring process standard deviation. The results show that the synthetic DS s chart is more effective for detecting increases in the process standard deviation for a wide range of shifts. An example is provided to illustrate the operation procedure of the synthetic DS s chart.  相似文献   

13.
A new control chart, called the θ chart, for monitoring the mean of a process with bivariate quality characteristics is proposed. It can identify a rotation, shift or alternation between the subgroups of the process mean. The conventional application of X2 chart to identify a sudden shift of the process mean is also expanded to identify a change of the process mean or a change of the process dispersion. Furthermore, when used together, the θ and X2 charts could provide further insight into the process.  相似文献   

14.
ABSTRACT

Quality control charts have been widely recognized as a potentially powerful statistical process monitoring tool in statistical process control because of their superior ability in detecting shifts in the process parameters. Recently, auxiliary-information-based control charts have been proposed and shown to have excellent speed in detecting process shifts than those based without it. In this paper, we design a new synthetic control chart that is based on a statistic that utilizes information from both the study and auxiliary variables. The proposed synthetic chart encompasses the classical synthetic chart. The construction, optimal design, run length profiles, and the performance evaluation of the new chart are discussed in detail. It turns out that the proposed synthetic chart performs uniformly better than the classical synthetic chart when detecting different kinds of shifts in the process mean under both zero-state and steady-state run length performances. Moreover, with reasonable assumptions, the proposed chart also surpasses the exponentially weighted moving average control chart. An application with a simulated data set is also presented to explain the implementation of the proposed control chart.  相似文献   

15.
ABSTRACT

Profile monitoring is one of the new research areas in statistical process control. Most of the control charts in this area are designed with fixed sampling rate which makes the control chart slow in detecting small to moderate shifts. In order to improve the performance of the conventional fixed control charts, adaptive features are proposed in which, one or more design parameters vary during the process. In this paper the variable sample size feature of EWMA3 and MEWMA schemes are proposed for monitoring simple linear profiles. The EWMA3 method is based on the combination of three exponentially weighted moving average (EWMA) charts for monitoring three parameters of a simple linear profile separately and the Multivariate EWMA (MEWMA) chart is based on the using a single chart to monitor the coefficients and variance of a general linear profile. Also a two-sided control chart is proposed for monitoring the standard deviation in the EWMA3 method. The performance of the proposed charts is compared in terms of the average time to signal. Numerical examples show that using adaptive features increase the power of control charts in detecting the parameter shifts. Finally, the performance of the proposed variable sample size schemes is illustrated through a real case in the leather industry.  相似文献   

16.
A new S2 control chart is presented for monitoring the process variance by utilizing a repetitive sampling scheme. The double control limits called inner and outer control limits are proposed, whose coefficients are determined by considering the average run length (ARL) and the average sample number when the process is in control. The proposed control chart is compared with the existing Shewhart S2 control chart in terms of the ARLs. The result shows that the proposed control chart is more efficient than the existing control chart in detecting the process shift.  相似文献   

17.
A variable sampling interval (VSI) feature is introduced to the multivariate synthetic generalized sample variance |S| control chart. This multivariate synthetic control chart is a combination of the |S| sub-chart and the conforming run length sub-chart. The VSI feature enhances the performance of the multivariate synthetic control chart. The comparative results show that the VSI multivariate synthetic control chart performs better than other types of multivariate control charts for detecting shifts in the covariance matrix of a multivariate normally distributed process. An example is given to illustrate the operation of the VSI multivariate synthetic chart.  相似文献   

18.
Statistical quality control charts have been widely accepted as a potentially powerful process monitoring tool because of their excellent speed in tracking shifts in the underlying process parameter(s). In recent studies, auxiliary-information-based (AIB) control charts have shown superior run length performances than those constructed without using it. In this paper, a new double sampling (DS) control chart is constructed whose plotting-statistics requires information on the study variable and on any correlated auxiliary variable for efficiently monitoring the process mean, namely AIB DS chart. The AIB DS chart also encompasses the classical DS chart. We discuss in detail the construction, optimal design, run length profiles, and the performance evaluations of the proposed chart. It turns out that the AIB DS chart performs uniformly better than the DS chart when detecting different kinds of shifts in the process mean. It is also more sensitive than the classical synthetic and AIB synthetic charts when detecting a particular shift in the process mean. Moreover, with some realistic beliefs, the proposed chart outperforms the exponentially weighted moving average chart. An illustrative example is also presented to explain the working and implementation of the proposed chart.  相似文献   

19.
The Shewhart s chart has been widely used to monitor the standard deviation of a process. However, the main disadvantage of an s chart is its slowness to signal small increases in the variability. In this paper, ideas of adaptive control charts are extended to the Shewhart s chart for improving the efficiency in signalling increases in the standard deviation. A Markov chain model is applied to evaluate its performances and compares its performances with combined double sampling and variable sampling intervals s chart, variable parameters (VP) R chart, exponentially weighted moving average and Cusum charts. The statistical performances show that the VP s chart is more sensitive to increases in standard deviation.  相似文献   

20.
ABSTRACT

Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much service data come from a process with variables having non-normal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, should not be properly used in such circumstances. In this paper, we propose a new variance chart based on a simple statistic to monitor process variance shifts. We explore the sampling properties of the new monitoring statistic and calculate the average run lengths (ARLs) of the proposed variance chart. Furthermore, an arcsine transformed exponentially weighted moving average (EWMA) chart is proposed because the ARLs of this modified chart are more intuitive and reasonable than those of the variance chart. We compare the out-of-control variance detection performance of the proposed variance chart with that of the non-parametric Mood variance (NP-M) chart with runs rules, developed by Zombade and Ghute [Nonparametric control chart for variability using runs rules. Experiment. 2014;24(4):1683–1691], and the nonparametric likelihood ratio-based distribution-free exponential weighted moving average (NLE) chart and the combination of traditional exponential weighted moving average (EWMA) mean and EWMA variance (CEW) control chart proposed by Zou and Tsung [Likelihood ratio-based distribution-free EWMA control charts. J Qual Technol. 2010;42(2):174–196] by considering cases in which the critical quality characteristic has a normal, a double exponential or a uniform distribution. Comparison results showed that the proposed chart performs better than the NP-M with runs rules, and the NLE and CEW control charts. A numerical example of service times with a right-skewed distribution from a service system of a bank branch in Taiwan is used to illustrate the application of the proposed variance chart and of the arcsine transformed EWMA chart and to compare them with three existing variance (or standard deviation) charts. The proposed charts show better detection performance than those three existing variance charts in monitoring and detecting shifts in the process variance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号