首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a ground-breaking paper published in 1990 by the Journal of the Royal Statistical Society, J.R.M. Hosking defined the L-moment of a random variable as an expectation of certain linear combinations of order statistics. L-moments are an alternative to conventional moments and recently they have been used often in inferential statistics. L-moments have several advantages over the conventional moments, including robustness to the the presence of outliers, which may lead to more accurate estimates in some cases as the characteristics of distributions. In this contribution, asymptotic theory and L-moments are used to derive confidence intervals of the population parameters and quantiles of the three-parametric generalized Pareto and extreme-value distributions. Computer simulations are performed to determine the performance of confidence intervals for the population quantiles based on L-moments and to compare them to those obtained by traditional estimation techniques. The results obtained show that they perform well in comparison to the moments and maximum likelihood methods when the interest is in higher quantiles, or even best. L-moments are especially recommended when the tail of the distribution is rather heavier and the sample size is small. The derived intervals are applied to real economic data, and specifically to market-opening asset prices.  相似文献   

2.
The four-parameter kappa distribution (K4D) is a generalized form of some commonly used distributions such as generalized logistic, generalized Pareto, generalized Gumbel, and generalized extreme value (GEV) distributions. Owing to its flexibility, the K4D is widely applied in modeling in several fields such as hydrology and climatic change. For the estimation of the four parameters, the maximum likelihood approach and the method of L-moments are usually employed. The L-moment estimator (LME) method works well for some parameter spaces, with up to a moderate sample size, but it is sometimes not feasible in terms of computing the appropriate estimates. Meanwhile, using the maximum likelihood estimator (MLE) with small sample sizes shows substantially poor performance in terms of a large variance of the estimator. We therefore propose a maximum penalized likelihood estimation (MPLE) of K4D by adjusting the existing penalty functions that restrict the parameter space. Eighteen combinations of penalties for two shape parameters are considered and compared. The MPLE retains modeling flexibility and large sample optimality while also improving on small sample properties. The properties of the proposed estimator are verified through a Monte Carlo simulation, and an application case is demonstrated taking Thailand’s annual maximum temperature data.  相似文献   

3.
A new four-parameter distribution called the exponentiated power Lindley–Poisson distribution which is an extension of the power Lindley and Lindley–Poisson distributions is introduced. Statistical properties of the distribution including the shapes of the density and hazard functions, moments, entropy measures, and distribution of order statistics are given. Maximum likelihood estimation technique is used to estimate the parameters. A simulation study is conducted to examine the bias, mean square error of the maximum likelihood estimators, and width of the confidence interval for each parameter. Finally, applications to real data sets are presented to illustrate the usefulness of the proposed distribution.  相似文献   

4.
In this paper, we consider a mixture of two uniform distributions and derive L-moment estimators of its parameters. Three possible ways of mixing two uniforms, namely with neither overlap nor gap, with overlap, and with gap, are studied. The performance of these L-moment estimators in terms of bias and efficiency is compared to that obtained by means of the conventional method of moments (MM), modified maximum likelihood (MML) method and the usual maximum likelihood (ML) method. These intensive simulations reveal that MML estimators are the best in most of the cases, and the L-moment estimators are less subject to bias in estimation for some mixtures and more efficient in most of the cases than the conventional MM estimators. The L-moment estimators are, in some cases, more efficient than the ML and MML estimators.  相似文献   

5.
The inverted generalized exponential distribution is defined as an alternative model for lifetime data. The existence of moments of this distribution is shown to hold under some restrictions. However, all the moments exist for the truncated inverted generalized exponential distribution and closed-form expressions for them are derived in this article. The distributional properties of this truncated distribution are studied. Maximum likelihood estimation method is discussed for the estimation of the parameters of the distribution both theoretically and empirically. In order to see the modeling performance of the distribution, two real datasets are analyzed.  相似文献   

6.
A new four-parameter distribution is introduced. It appears to be a distribution allowing for and only allowing for monotonically increasing, bathtub-shaped and upside down bathtub-shaped hazard rates. It contains as particular cases many of the known lifetime distributions. Some mathematical properties of the new distribution, including estimation procedures by the method of maximum likelihood are derived. Some simulations are run to assess the performance of the maximum-likelihood estimators. Finally, the flexibility of the new distribution is illustrated using a real data set.  相似文献   

7.
In this article, we propose a four-parameter asymmetric doubly Pareto-uniform (DPU) distribution with support (?∞, ∞) whose density and cumulative distribution functions are constructed by seamlessly concatenating the left and right Pareto tails with a uniform central part. Properties of the distribution are described and a maximum likelihood estimation (MLE) procedure for its parameters is obtained. Two illustrative examples of the MLE procedure are provided. The first example utilizes an i.i.d. sample of standardized log-differences of bi-monthly 30-year U.S. conventional mortgage interest rates (1971–2004). The second example deals with the height of 100 female Australian athletes.  相似文献   

8.
The starship, as an alternative or companion procedure to the bootstrap, introduced by Owen (1988), and the well known maximum likelihood estimation procedure were used to find prediction intervals for the future sample mean of an exponential distribution. Some remarks based on a simulation study are made on the differences between the two procedures.  相似文献   

9.
Understanding patterns in the frequency of extreme natural events, such as earthquakes, is important as it helps in the prediction of their future occurrence and hence provides better civil protection. Distributions describing these events are known to be heavy tailed and positive skew making standard distributions unsuitable for modelling the frequency of such events. The Birnbaum–Saunders distribution and its extreme value version have been widely studied and applied due to their attractive properties. We derive L-moment equations for these distributions and propose novel methods for parameter estimation, goodness-of-fit assessment and model selection. A simulation study is conducted to evaluate the performance of the L-moment estimators, which is compared to that of the maximum likelihood estimators, demonstrating the superiority of the proposed methods. To illustrate these methods in a practical application, a data analysis of real-world earthquake magnitudes, obtained from the global centroid moment tensor catalogue during 1962–2015, is carried out. This application identifies the extreme value Birnbaum–Saunders distribution as a better model than classic extreme value distributions for describing seismic events.  相似文献   

10.
Generalizing lifetime distributions is always precious for applied statisticians. In this paper, we introduce a new four-parameter generalization of the exponentiated power Lindley (EPL) distribution, called the exponentiated power Lindley geometric (EPLG) distribution, obtained by compounding EPL and geometric distributions. The new distribution arises in a latent complementary risks scenario, in which the lifetime associated with a particular risk is not observable; rather, we observe only the maximum lifetime value among all risks. The distribution exhibits decreasing, increasing, unimodal and bathtub-shaped hazard rate functions, depending on its parameters. It contains several lifetime distributions as particular cases: EPL, new generalized Lindley, generalized Lindley, power Lindley and Lindley geometric distributions. We derive several properties of the new distribution such as closed-form expressions for the density, cumulative distribution function, survival function, hazard rate function, the rth raw moment, and also the moments of order statistics. Moreover, we discuss maximum likelihood estimation and provide formulas for the elements of the Fisher information matrix. Simulation studies are also provided. Finally, two real data applications are given for showing the flexibility and potentiality of the new distribution.  相似文献   

11.
In this paper, the Markov chain Monte Carlo (MCMC) method is used to estimate the parameters of a modified Weibull distribution based on a complete sample. While maximum-likelihood estimation (MLE) is the most used method for parameter estimation, MCMC has recently emerged as a good alternative. When applied to parameter estimation, MCMC methods have been shown to be easy to implement computationally, the estimates always exist and are statistically consistent, and their probability intervals are convenient to construct. Details of applying MCMC to parameter estimation for the modified Weibull model are elaborated and a numerical example is presented to illustrate the methods of inference discussed in this paper. To compare MCMC with MLE, a simulation study is provided, and the differences between the estimates obtained by the two algorithms are examined.  相似文献   

12.
In this article, we introduce a new estimator for the generalized Pareto distribution, which is based on the maximum likelihood estimation and the goodness of fit. The asymptotic normality of the new estimator is shown and a small simulation. From the simulation, the performance of the new estimator is roughly comparable with maximum likelihood for positive values of the shape parameter and often much better than maximum likelihood for negative values.  相似文献   

13.
In this article, L-moments, LQ-moments and TL-moments of the generalized Pareto and generalized extreme-value distributions are derived up to the fourth order. The first three L-, LQ- and TL-moments are used to obtain estimators of their parameters. Performing a simulation study, high-quantile estimates based on L-, LQ-, and TL-moments are compared to the maximum likelihood estimate with respect to their sample mean squared error. This consists of identifying an optimal combination of parameters α and p both considered in the range [0, 0.5] for estimating quantiles by LQ-moments. The results show L-moment and maximum likelihood methods outperform other methods.  相似文献   

14.
ON ESTIMATION OF LONG-MEMORY TIME SERIES MODELS   总被引:1,自引:0,他引:1  
This paper discusses estimation associated with the long-memory time series models proposed by Granger & Joyeux (1980) and Hosking (1981). We consider the maximum likelihood estimator and the least squares estimator. Certain regularity conditions introduced by several authors to develop the asymptotic theory of these estimators do not hold in this model. However we can show that these estimators are strongly consistent, and we derive the limiting distribution and the rate of convergence.  相似文献   

15.
Although the asymptotic distributions of the likelihood ratio for testing hypotheses of null variance components in linear mixed models derived by Stram and Lee [1994. Variance components testing in longitudinal mixed effects model. Biometrics 50, 1171–1177] are valid, their proof is based on the work of Self and Liang [1987. Asymptotic properties of maximum likelihood estimators and likelihood tests under nonstandard conditions. J. Amer. Statist. Assoc. 82, 605–610] which requires identically distributed random variables, an assumption not always valid in longitudinal data problems. We use the less restrictive results of Vu and Zhou [1997. Generalization of likelihood ratio tests under nonstandard conditions. Ann. Statist. 25, 897–916] to prove that the proposed mixture of chi-squared distributions is the actual asymptotic distribution of such likelihood ratios used as test statistics for null variance components in models with one or two random effects. We also consider a limited simulation study to evaluate the appropriateness of the asymptotic distribution of such likelihood ratios in moderately sized samples.  相似文献   

16.
We introduce a new class of flexible hazard rate distributions which have constant, increasing, decreasing, and bathtub-shaped hazard function. This class of distributions obtained by compounding the power and exponential hazard rate functions, which is called the power-exponential hazard rate distribution and contains several important lifetime distributions. We obtain some distributional properties of the new family of distributions. The estimation of parameters is obtained by using the maximum likelihood and the Bayesian methods under squared error, linear-exponential, and Stein’s loss functions. Also, approximate confidence intervals and HPD credible intervals of parameters are presented. An application to real dataset is provided to show that the new hazard rate distribution has a better fit than the other existing hazard rate distributions and some four-parameter distributions. Finally , to compare the performance of proposed estimators and confidence intervals, an extensive Monte Carlo simulation study is conducted.  相似文献   

17.
In this article, we shall attempt to introduce a new class of lifetime distributions, which enfolds several known distributions such as the generalized linear failure rate distribution and covers both positive as well as negative skewed data. This new four-parameter distribution allows for flexible hazard rate behavior. Indeed, the hazard rate function here can be increasing, decreasing, bathtub-shaped, or upside-down bathtub-shaped. We shall first study some basic distributional properties of the new model such as the cumulative distribution function, the density of the order statistics, their moments, and Rényi entropy. Estimation of the stress-strength parameter as an important reliability property is also studied. The maximum likelihood estimation procedure for complete and censored data and Bayesian method are used for estimating the parameters involved. Finally, application of the new model to three real datasets is illustrated to show the flexibility and potential of the new model compared to rival models.  相似文献   

18.
Interval-censored data are very common in the reliability and lifetime data analysis. This paper investigates the performance of different estimation procedures for a special type of interval-censored data, i.e. grouped data, from three widely used lifetime distributions. The approaches considered here include the maximum likelihood estimation, the minimum distance estimation based on chi-square criterion, the moment estimation based on imputation (IM) method and an ad hoc estimation procedure. Although IM-based techniques are extensively used recently, we show that this method is not always effective. It is found that the ad hoc estimation procedure is equivalent to the minimum distance estimation with another distance metric and more effective in the simulation. The procedures of different approaches are presented and their performances are investigated by Monte Carlo simulation for various combinations of sample sizes and parameter settings. The numerical results provide guidelines to analyse grouped data for practitioners when they need to choose a good estimation approach.  相似文献   

19.
In this article, a new discrete distribution related to the generalized gamma distribution (Stacy, 1962) is derived from a statistical mechanical setup. This new distribution can be seen as generalization of two-parameter discrete gamma distribution (Chakraborty and Chakravarty, 2012) and encompasses discrete version of many important continuous distributions. Some basic distributional and reliability properties, parameter estimation by different methods, and their comparative performances using simulation are investigated. Two-real life data sets are considered for data modeling and likelihood ratio test for illustrating the advantages of the proposed distribution over two-parameter discrete gamma distribution.  相似文献   

20.
This article considers the two-piece normal-Laplace (TPNL) distribution, a split skew distribution consisting of a normal part, and a Laplace part. The distribution is indexed by three parameters, representing location, scale, and shape. As illustrated with several examples, the TPNL family of distributions provides a useful alternative to other families of asymmetric distributions on the real line. However, because the likelihood function is not well behaved, standard theory of maximum-likelihood (ML) estimation does not apply to the TPNL family. In particular, the likelihood function can have multiple local maxima. We provide a procedure for computing ML estimators, and prove consistency and asymptotic normality of ML estimators, using non standard methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号