首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we deal with semi-parametric corrected-bias estimation of a positive extreme value index (EVI), the primary parameter in statistics of extremes. Under such a context, the classical EVI-estimators are the Hill estimators, based on any intermediate number k of top-order statistics. But these EVI-estimators are not location-invariant, contrarily to the PORT-Hill estimators, which depend on an extra tuning parameter q, with 0 ≤ q < 1, and where PORT stands for peaks over random threshold. On the basis of second-order minimum-variance reduced-bias (MVRB) EVI-estimators, we shall here consider PORT-MVRB EVI-estimators. Due to the stability on k of the MVRB EVI-estimates, we propose the use of a heuristic algorithm, for the adaptive choice of k and q, based on the bias pattern of the estimators as a function of k. Applications in the fields of insurance and finance will be provided.  相似文献   

2.
In this article, we deal with an empirical comparison of two data-driven heuristic procedures of estimation of a positive extreme value index (EVI), working thus with heavy right tails. The semi-parametric EVI-estimators under consideration, the so-called peaks over random threshold (PORT)–minimum-variance reduced-bias (MVRB) EVI-estimators, are location and scale-invariant estimators, based on the PORT methodology applied to second-order MVRB EVI-estimators. Trivial adaptations of these algorithms make them work for a similar estimation of other parameters of extreme events, such as the Value-at-Risk at a level p, the expected shortfall and the probability of exceedance of a high level x, among others. Applications to simulated data sets and to real data sets in the field of finance are provided.  相似文献   

3.
In this article, we use the peaks over random threshold (PORT)-methodology, and consider Hill and moment PORT-classes of extreme value index estimators. These classes of estimators are invariant not only to changes in scale, like the classical Hill and moment estimators, but also to changes in location. They are based on the sample of excesses over a random threshold, the order statistic X [np]+1:n , 0 ≤ p < 1, being p a tuning parameter, which makes them highly flexible. Under convenient restrictions on the underlying model, these classes of estimators are consistent and asymptotically normal for adequate values of k, the number of top order statistics used in the semi-parametric estimation of the extreme value index γ. In practice, there may however appear a stability around a value distant from the target γ when the minimum is chosen for the random threshold, and attention is drawn for the danger of transforming the original data through the subtraction of the minimum. A new bias-corrected moment estimator is also introduced. The exact performance of the new extreme value index PORT-estimators is compared, through a large-scale Monte-Carlo simulation study, with the original Hill and moment estimators, the bias-corrected moment estimator, and one of the minimum-variance reduced-bias (MVRB) extreme value index estimators recently introduced in the literature. As an empirical example we estimate the tail index associated to a set of real data from the field of finance.  相似文献   

4.
An ARMA(p, q) process observed with an ARMA(c, d) error has an ARMA (p + c, k) representation with k = max(c + q, p + d) whose parameters satisfy some nonlinear constraints. Identification of the model is discussed. We develop Newton-Raphson estimators for the ARMA(p + c, k) process which take advantage of the information contained in the nonlinear restrictions. Explicit expressions for the derivatives of the restrictions are derived.  相似文献   

5.
This paper reports an extensive Monte Carlo simulation study based on six estimators for the long memory fractional parameter when the time series is non-stationary, i.e., ARFIMA(p, d, q) process for d?>?0.5. Parametric and semiparametric methods are compared. In addition, the effect of the parameter estimation is investigated for small and large sample sizes and non-Gaussian error innovations. The methodology is applied to a well known data set, the so-called UK short interest rates.  相似文献   

6.

Causal quadrantal-type spatial ARMA(p, q) models with independent and identically distributed innovations are considered. In order to select the orders (p, q) of these models and estimate their autoregressive parameters, estimators of the autoregressive coefficients, derived from the extended Yule–Walker equations are defined. Consistency and asymptotic normality are obtained for these estimators. Then, spatial ARMA model identification is considered and simulation study is given.  相似文献   

7.
Let Π1,…,Πk be k populations with Πi being Pareto with unknown scale parameter αi and known shape parameter βi;i=1,…,k. Suppose independent random samples (Xi1,…,Xin), i=1,…,k of equal size are drawn from each of k populations and let Xi denote the smallest observation of the ith sample. The population corresponding to the largest Xi is selected. We consider the problem of estimating the scale parameter of the selected population and obtain the uniformly minimum variance unbiased estimator (UMVUE) when the shape parameters are assumed to be equal. An admissible class of linear estimators is derived. Further, a general inadmissibility result for the scale equivariant estimators is proved.  相似文献   

8.
Let π1, …, πk be k (? 2) independent populations, where πi denotes the uniform distribution over the interval (0, θi) and θi > 0 (i = 1, …, k) is an unknown scale parameter. The population associated with the largest scale parameter is called the best population. For selecting the best population, We use a selection rule based on the natural estimators of θi, i = 1, …, k, for the case of unequal sample sizes. Consider the problem of estimating the scale parameter θL of the selected uniform population when sample sizes are unequal and the loss is measured by the squared log error (SLE) loss function. We derive the uniformly minimum risk unbiased (UMRU) estimator of θL under the SLE loss function and two natural estimators of θL are also studied. For k = 2, we derive a sufficient condition for inadmissibility of an estimator of θL. Using these condition, we conclude that the UMRU estimator and natural estimator are inadmissible. Finally, the risk functions of various competing estimators of θL are compared through simulation.  相似文献   

9.
The Hinde–Demétrio (HD) family of distributions, which are discrete exponential dispersion models with an additional real index parameter p, have been recently characterized from the unit variance function μ + μ p . For p equals to 2, 3,…, the corresponding distributions are concentrated on non negative integers, overdispersed and zero-inflated with respect to a Poisson distribution having the same mean. The negative binomial (p = 2) and strict arcsine (p = 3) distributions are HD families; the limit case (p → ∞) is associated to a suitable Poisson distribution. Apart from these count distributions, none of the HD distributions has explicit probability mass functions p k . This article shows that the ratios r k  = k p k /p k?1, k = 1,…, p ? 1, are equal and different from r p . This new property allows, for a given count data set, to determine the integer p by some tests. The extreme situation of p = 2 is of general interest for count data. Some examples are used for illustrations and discussions.  相似文献   

10.
We define the Wishart distribution on the cone of positive definite matrices and an exponential distribution on the Lorentz cone as exponential dispersion models. We show that these two distributions possess a property of exact decomposition, and we use this property to solve the following problem: given q samples (yil,… yiNj), i = l,…,q, from a N(μii,) distribution, test H1 = Σ2 = … = σq. Using the exact decomposition property, the classical test statistic for H, involving q parameters pi = (Ni, - l)/2, i = 1,…,q, is replaced by a sequence of q - l test statistics for the sequence of tests Hi,:σ12 = … =σi given that Hi-1 is true, i = 2,…,q. Each one of these test statistics involves two parameters only, p.i-1 = p1 + … + pi-1 and pi. We also use the exact decomposition property to test equality of the “direction parameters” for q sample points from the exponential distribution on the Lorentz cone. We give a table of critical values for the distribution on the three-dimensional Lorentz cone. Tables of critical values in higher dimensions can easily be computed following the same method as in dimension three.  相似文献   

11.
For the problem of estimating a parameter θ when θ is known to lie in a closed, convex subset D of Rk, conditions are given under which estimators δ of θ cannot be Bayes estimators, as well as conditions under which δ is inadmissible. The estimators considered are so-called “boundary estimators”. Maximum-likelihood estimators in truncated parameter spaces are examples to which our results often apply. For the special case when k = 1 and D is compact, two classes of estimators dominating the inadmissible ones are constructed. Some examples are given.  相似文献   

12.
We study confidence intervals based on hard-thresholding, soft-thresholding, and adaptive soft-thresholding in a linear regression model where the number of regressors k may depend on and diverge with sample size n. In addition to the case of known error variance, we define and study versions of the estimators when the error variance is unknown. In the known-variance case, we provide an exact analysis of the coverage properties of such intervals in finite samples. We show that these intervals are always larger than the standard interval based on the least-squares estimator. Asymptotically, the intervals based on the thresholding estimators are larger even by an order of magnitude when the estimators are tuned to perform consistent variable selection. For the unknown-variance case, we provide nontrivial lower bounds and a small numerical study for the coverage probabilities in finite samples. We also conduct an asymptotic analysis where the results from the known-variance case can be shown to carry over asymptotically if the number of degrees of freedom n ? k tends to infinity fast enough in relation to the thresholding parameter.  相似文献   

13.
Let be k independent populations having the same known quantile of order p (0 p 1) and let F(x)=F(x/i) be the absolutely continuous cumulative distribution function of the ith population indexed by the scale parameter 1, i = 1,…, k. We propose subset selection procedures based on two-sample U-statistics for selecting a subset of k populations containing the one associated with the smallest scale parameter. These procedures are compared with the subset selection procedures based on two-sample linear rank statistics given by Gill & Mehta (1989) in the sense of Pitman asymptotic relative efficiency, with interesting results.  相似文献   

14.
In Statistics of Extremes, the estimation of parameters of extreme or even rare events is usually done under a semi-parametric framework. The estimators are based on the largest k-ordered statistics in the sample or on the excesses over a high level u. Although showing good asymptotic properties, most of those estimators present a strong dependence on k or u with high bias when the k increases or the level u decreases. The use of resampling methodologies has revealed to be promising in the reduction of the bias and in the choice of k or u. Different approaches for resampling need to be considered depending on whether we are in an independent or in a dependent setup. A great amount of investigation has been performed for the independent situation. The main objective of this article is to use bootstrap and jackknife methods in the context of dependence to obtain more stable estimators of a parameter that appears characterizing the degree of local dependence on extremes, the so-called extremal index. A simulation study illustrates the application of those methods.  相似文献   

15.
We consider an inhomogeneous Poisson process X on [0, T]. The intensity function of X is supposed to be strictly positive and smooth on [0, T] except at the point θ, in which it has either a 0-type singularity (tends to 0 like |x| p , p∈(0, 1)), or an ∞-type singularity (tends to ∞ like |x| p , p∈(?1, 0)). We suppose that we know the shape of the intensity function, but not the location of the singularity. We consider the problem of estimation of this location (shift) parameter θ based on n observations of the process X. We study the Bayesian estimators and, in the case p>0, the maximum-likelihood estimator. We show that these estimators are consistent, their rate of convergence is n 1/(p+1), they have different limit distributions, and the Bayesian estimators are asymptotically efficient.  相似文献   

16.
In this article, we discuss finding the optimal k of (i) kth simple moving average, (ii) kth weighted moving average, and (iii) kth exponential weighted moving average based on simulated ARIMA(p, d, q) model. We run a simulation using the three above examining methods under specific conditions. The main finding is that 5th exponential weighted moving average (5th EWMA) ARIMA model is the best forecasting model among others, which means the optimal k = 5. For Turkish Telecommunications (TTKOM) stock market, real data reveal the similar results of simulation study.  相似文献   

17.
The large nonparametric model in this note is a statistical model with the family ? of all continuous and strictly increasing distribution functions. In the abundant literature of the subject, there are many proposals for nonparametric estimators that are applicable in the model. Typically the kth order statistic X k:n is taken as a simplest estimator, with k = [nq], or k = [(n + 1)q], or k = [nq] + 1, etc. Often a linear combination of two consecutive order statistics is considered. In more sophisticated constructions, different L-statistics (e.g., Harrel–Davis, Kaigh–Lachenbruch, Bernstein, kernel estimators) are proposed. Asymptotically the estimators do not differ substantially, but if the sample size n is fixed, which is the case of our concern, differences may be serious. A unified treatment of quantile estimators in the large, nonparametric statistical model is developed.  相似文献   

18.
ABSTRACT

In this article we suggest some improved version of estimators of scale parameter of Morgenstern-type bivariate uniform distribution (MTBUD) based on the observations made on the units of the ranked set sampling regarding the study variable Y which is correlated with the auxiliary variable X, when (X, Y) follows a MTBUD. We also suggest some linear shrinkage estimators of scale parameter of Morgenstern type bivariate uniform distribution (MTBUD). Efficiency comparisons are also made in this work.  相似文献   

19.
i , i = 1, 2, ..., k be k independent exponential populations with different unknown location parameters θ i , i = 1, 2, ..., k and common known scale parameter σ. Let Y i denote the smallest observation based on a random sample of size n from the i-th population. Suppose a subset of the given k population is selected using the subset selection procedure according to which the population π i is selected iff Y i Y (1)d, where Y (1) is the largest of the Y i 's and d is some suitable constant. The estimation of the location parameters associated with the selected populations is considered for the squared error loss. It is observed that the natural estimator dominates the unbiased estimator. It is also shown that the natural estimator itself is inadmissible and a class of improved estimators that dominate the natural estimator is obtained. The improved estimators are consistent and their risks are shown to be O(kn −2). As a special case, we obtain the coresponding results for the estimation of θ(1), the parameter associated with Y (1). Received: January 6, 1998; revised version: July 11, 2000  相似文献   

20.
Assume that X 1, X 2,…, X n is a sequence of i.i.d. random variables with α-stable distribution (α ∈ (0,2], the stable exponent, is the unknown parameter). We construct minimum distance estimators for α by minimizing the Kolmogorov distance or the Cramér–von-Mises distance between the empirical distribution function G n , and a class of distributions defined based on the sum-preserving property of stable random variables. The minimum distance estimators can also be obtained by minimizing a U-statistic estimate of an empirical distribution function involving the stable exponent. They share the same invariance property with the maximum likelihood estimates. In this article, we prove the strong consistency of the minimum distance estimators. We prove the asymptotic normality of our estimators. Simulation study shows that the new estimators are competitive to the existing ones and perform very closely even to the maximum likelihood estimator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号