首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Let (X i , Y i ), i = 1, 2,…, n be independent and identically distributed random variables from some continuous bivariate distribution. If X (r) denotes the rth-order statistic, then the Y's associated with X (r) denoted by Y [r] is called the concomitant of the rth-order statistic. In this article, we derive an analytical expression of Shannon entropy for concomitants of order statistics in FGM family. Applying this expression for some well-known distributions of this family, we obtain the exact form of Shannon entropy, some of the information properties, and entropy bounds for concomitants of order statistics. Some comparisons are also made between the entropy of order statistics X (r) and the entropy of its concomitants Y [r]. In this family, we show that the mutual information between X (r) and Y [r], and Kullback–Leibler distance among the concomitants of order statistics are all distribution-free. Also, we compare the Pearson correlation coefficient between X (r) and Y [r] with the mutual information of (X (r), Y [r]) for the copula model of FGM family.  相似文献   

2.
Consider the regression model Yi= g(xi) + ei, i = 1,…, n, where g is an unknown function defined on [0, 1], 0 = x0 < x1 < … < xn≤ 1 are chosen so that max1≤i≤n(xi-xi- 1) = 0(n-1), and where {ei} are i.i.d. with Ee1= 0 and Var e1 - s?2. In a previous paper, Cheng & Lin (1979) study three estimators of g, namely, g1n of Cheng & Lin (1979), g2n of Clark (1977), and g3n of Priestley & Chao (1972). Consistency results are established and rates of strong uniform convergence are obtained. In the current investigation the limiting distribution of &in, i = 1, 2, 3, and that of the isotonic estimator g**n are considered.  相似文献   

3.
Let X1,., Xn, be i.i.d. random variables with distribution function F, and let Y1,.,.,Yn be i.i.d. with distribution function G. For i = 1, 2,.,., n set δi, = 1 if Xi ≤ Yi, and 0 otherwise, and Xi, = min{Xi, Ki}. A kernel-type density estimate of f, the density function of F w.r.t. Lebesgue measure on the Borel o-field, based on the censored data (δi, Xi), i = 1,.,.,n, is considered. Weak and strong uniform consistency properties over the whole real line are studied. Rates of convergence results are established under higher-order differentiability assumption on f. A procedure for relaxing such assumptions is also proposed.  相似文献   

4.
ABSTRACT

Let (Xi, Yi), i = 1, …, n be a pair where the first coordinate Xi represents the lifetime of a component, and the second coordinate Yi denotes the utility of the component during its lifetime. Then the random variable Y[r: n] which is known to be the concomitant of the rth order statistic defines the utility of the component which has the rth smallest lifetime. In this paper, we present a dynamic analysis for an n component system under the above-mentioned concomitant setup.  相似文献   

5.
When two‐component parallel systems are tested, the data consist of Type‐II censored data X(i), i= 1, n, from one component, and their concomitants Y [i] randomly censored at X(r), the stopping time of the experiment. Marshall & Olkin's (1967) bivariate exponential distribution is used to illustrate statistical inference procedures developed for this data type. Although this data type is motivated practically, the likelihood is complicated, and maximum likelihood estimation is difficult, especially in the case where the parameter space is a non‐open set. An iterative algorithm is proposed for finding maximum likelihood estimates. This article derives several properties of the maximum likelihood estimator (MLE) including existence, uniqueness, strong consistency and asymptotic distribution. It also develops an alternative estimation method with closed‐form expressions based on marginal distributions, and derives its asymptotic properties. Compared with variances of the MLEs in the finite and large sample situations, the alternative estimator performs very well, especially when the correlation between X and Y is small.  相似文献   

6.
Morteza Amini 《Statistics》2013,47(5):393-405
In a sequence of bivariate random variables {(X i , Y i ), i≥1} from a continuous distribution with a real parameter θ, general comparison results between the amount of Fisher information about θ contained in the sequence of the first n records and their concomitants, and the desired information in an i.i.d. sample of size n from the parent distribution are established. Some relationships between reliability properties and the proposed criteria are obtained in situations in which the univariate counterpart of the underlying bivariate family belongs to location, scale or shape families. It is also shown that in some classes of bivariate families, the concerned information property is equivalent to that of its univariate counterpart. The proposed procedure is illustrated by considering several examples.  相似文献   

7.
We consider the problem of maximum likelihood estimation of the parameters of the bxvariate binomial distribution, In the statistical literature, this problem is solved when the observed sample is available in the form of a 2x2 contingency table, that is, with all four cell fre quencies given,, The present paper provides a solution for this problem when only the marginal totals of the 2x2 table are observed, which is the natural set-up in a bivariate sampling situation.. Thus, based on a sample [(Xi,Yi:), i = 1, …, k] from a bivariate binomial population, we derive maximum likelihood (ML) estimators for the two marginal parameters p1,p2: and the covariance parameter p11: It. turns out that the ML estimators for P1: and P2: are expressed explicitly in terms of the sample values, whereas the ML estimator for p11: can only be obtained numerically by iterative methods Two nu merical illustrations are also presented  相似文献   

8.
In this paper, by considering a (3n+1) -dimensional random vector (X0, XT, YT, ZT)T having a multivariate elliptical distribution, we derive the exact joint distribution of (X0, aTX(n), bTY[n], cTZ[n])T, where a, b, c∈?n, X(n)=(X(1), …, X(n))T, X(1)<···<X(n), is the vector of order statistics arising from X, and Y[n]=(Y[1], …, Y[n])T and Z[n]=(Z[1], …, Z[n])T denote the vectors of concomitants corresponding to X(n) ((Y[r], Z[r])T, for r=1, …, n, is the vector of bivariate concomitants corresponding to X(r)). We then present an alternate approach for the derivation of the exact joint distribution of (X0, X(r), Y[r], Z[r])T, for r=1, …, n. We show that these joint distributions can be expressed as mixtures of four-variate unified skew-elliptical distributions and these mixture forms facilitate the prediction of X(r), say, based on the concomitants Y[r] and Z[r]. Finally, we illustrate the usefulness of our results by a real data.  相似文献   

9.
Let (X, Y) be a bivariate random vector with joint distribution function FX, Y(x, y) = C(F(x), G(y)), where C is a copula and F and G are marginal distributions of X and Y, respectively. Suppose that (Xi, Yi), i = 1, 2, …, n is a random sample from (X, Y) but we are able to observe only the data consisting of those pairs (Xi, Yi) for which Xi ? Yi. We denote such pairs as (X*i, Yi*), i = 1, 2, …, ν, where ν is a random variable. The main problem of interest is to express the distribution function FX, Y(x, y) and marginal distributions F and G with the distribution function of observed random variables X* and Y*. It is shown that if X and Y are exchangeable with marginal distribution function F, then F can be uniquely determined by the distributions of X* and Y*. It is also shown that if X and Y are independent and absolutely continuous, then F and G can be expressed through the distribution functions of X* and Y* and the stress–strength reliability P{X ? Y}. This allows also to estimate P{X ? Y} with the truncated observations (X*i, Yi*). The copula of bivariate random vector (X*, Y*) is also derived.  相似文献   

10.
Winfried Stute 《Statistics》2013,47(3-4):255-266
Let X 1, …, X [], X [] + 1, …, X n be a sequence of independent random variables (the “lifetimes”) such that X j ? F 1 for 1 ≤ j ≤ [] and X j ? F 2 for [] + 1 ≤ jn, with F 1 F 2 unknown. In this paper we investigate an estimator θ n for the changepoint θ if the X's are subject to censoring. The rate of almost sure convergence of θ n to θ is established and a test for the hypothesis θ = 0, i.e. “no change”, is proposed.  相似文献   

11.
Let (Xi, Yi), i = 1, 2,…, n, be n independent observations from a bivariate population and let X(n) = max Xi and Y(n) = max Yi. This article gives a necessary and sufficient condition for the weak convergence of the distribution function of (X(n), Y(n)) to a nondegenerate distribution.  相似文献   

12.
13.
For a random sample of size nn from an absolutely continuous random vector (X,Y)(X,Y), let Yi:nYi:n be iith YY-order statistic and Y[j:n]Y[j:n] be the YY-concomitant of Xj:nXj:n. We determine the joint pdf of Yi:nYi:n and Y[j:n]Y[j:n] for all i,j=1i,j=1 to nn, and establish some symmetry properties of the joint distribution for symmetric populations. We discuss the uses of the joint distribution in the computation of moments and probabilities of various ranks for Y[j:n]Y[j:n]. We also show how our results can be used to determine the expected cost of mismatch in broken bivariate samples and approximate the first two moments of the ratios of linear functions of Yi:nYi:n and Y[j:n]Y[j:n]. For the bivariate normal case, we compute the expectations of the product of Yi:nYi:n and Y[i:n]Y[i:n] for n=2n=2 to 8 for selected values of the correlation coefficient and illustrate their uses.  相似文献   

14.
Let X(1)X(2)≤···≤X(n) be the order statistics from independent and identically distributed random variables {Xi, 1≤in} with a common absolutely continuous distribution function. In this work, first a new characterization of distributions based on order statistics is presented. Next, we review some conditional expectation properties of order statistics, which can be used to establish some equivalent forms for conditional expectations for sum of random variables based on order statistics. Using these equivalent forms, some known results can be extended immediately.  相似文献   

15.
This paper addresses the problem of unbiased estimation of P[X > Y] = θ for two independent exponentially distributed random variables X and Y. We present (unique) unbiased estimator of θ based on a single pair of order statistics obtained from two independent random samples from the two populations. We also indicate how this estimator can be utilized to obtain unbiased estimators of θ when only a few selected order statistics are available from the two random samples as well as when the samples are selected by an alternative procedure known as ranked set sampling. It is proved that for ranked set samples of size two, the proposed estimator is uniformly better than the conventional non-parametric unbiased estimator and further, a modified ranked set sampling procedure provides an unbiased estimator even better than the proposed estimator.  相似文献   

16.
We consider a life testing experiment in whichn units are put on test, successive lifetimes (X 1,X 2) of both componentsC 1 andC 2 are recorded and the observation is terminated either at ther-th order statistic ofY i =Min(X 1i ,X 2i ),i=1,…,n i.e.Y (r) or a random timeT i whichever is reached first. This mixture of random censoring and type-II censoring schemes, we call as hybrid random censoring which is of wide use. We use this censoring scheme and obtain maximum likelihood estimation of the parameters and develop large sample tests in bivariate exponential (BVE) models proposed by Marshall-Olkin (1967), Block-Basu (1974), Freund (1961) and Preschan-Sullo (1974).  相似文献   

17.
i , i = 1, 2, ..., k be k independent exponential populations with different unknown location parameters θ i , i = 1, 2, ..., k and common known scale parameter σ. Let Y i denote the smallest observation based on a random sample of size n from the i-th population. Suppose a subset of the given k population is selected using the subset selection procedure according to which the population π i is selected iff Y i Y (1)d, where Y (1) is the largest of the Y i 's and d is some suitable constant. The estimation of the location parameters associated with the selected populations is considered for the squared error loss. It is observed that the natural estimator dominates the unbiased estimator. It is also shown that the natural estimator itself is inadmissible and a class of improved estimators that dominate the natural estimator is obtained. The improved estimators are consistent and their risks are shown to be O(kn −2). As a special case, we obtain the coresponding results for the estimation of θ(1), the parameter associated with Y (1). Received: January 6, 1998; revised version: July 11, 2000  相似文献   

18.
This paper introduces a new class of bivariate lifetime distributions. Let {Xi}i ? 1 and {Yi}i ? 1 be two independent sequences of independent and identically distributed positive valued random variables. Define T1 = min?(X1, …, XM) and T2 = min?(Y1, …, YN), where (M, N) has a discrete bivariate phase-type distribution, independent of {Xi}i ? 1 and {Yi}i ? 1. The joint survival function of (T1, T2) is studied.  相似文献   

19.
The large nonparametric model in this note is a statistical model with the family ? of all continuous and strictly increasing distribution functions. In the abundant literature of the subject, there are many proposals for nonparametric estimators that are applicable in the model. Typically the kth order statistic X k:n is taken as a simplest estimator, with k = [nq], or k = [(n + 1)q], or k = [nq] + 1, etc. Often a linear combination of two consecutive order statistics is considered. In more sophisticated constructions, different L-statistics (e.g., Harrel–Davis, Kaigh–Lachenbruch, Bernstein, kernel estimators) are proposed. Asymptotically the estimators do not differ substantially, but if the sample size n is fixed, which is the case of our concern, differences may be serious. A unified treatment of quantile estimators in the large, nonparametric statistical model is developed.  相似文献   

20.
Let X1, X2, …, Xn be identically, independently distributed N(i,1) random variables, where i = 0, ±1, ±2, … Hammersley (1950) showed that d = [X?n], the nearest integer to the sample mean, is the maximum likelihood estimator of i. Khan (1973) showed that d is minimax and admissible with respect to zero-one loss. This note now proves a conjecture of Stein to the effect that in the class of integer-valued estimators d is minimax and admissible under squared-error loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号