首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we present the performance of the maximum likelihood estimates of the Burr XII parameters for constant-stress partially accelerated life tests under multiple censored data. Two maximum likelihood estimation methods are considered. One method is based on observed-data likelihood function and the maximum likelihood estimates are obtained by using the quasi-Newton algorithm. The other method is based on complete-data likelihood function and the maximum likelihood estimates are derived by using the expectation-maximization (EM) algorithm. The variance–covariance matrices are derived to construct the confidence intervals of the parameters. The performance of these two algorithms is compared with each other by a simulation study. The simulation results show that the maximum likelihood estimation via the EM algorithm outperforms the quasi-Newton algorithm in terms of the absolute relative bias, the bias, the root mean square error and the coverage rate. Finally, a numerical example is given to illustrate the performance of the proposed methods.  相似文献   

2.
In this article, we present EM algorithms for performing maximum likelihood estimation for three multivariate skew-normal regression models of considerable practical interest. We also consider the restricted estimation of the parameters of certain important special cases of two models. The methodology developed is applied in the analysis of longitudinal data on dental plaque and cholesterol levels.  相似文献   

3.
This article applies the EM-based (ECM and ECME) algorithms to find the maximum likelihood estimates of model parameters in general AR models with independent scaled t-distributed innovations whenever the degrees of freedom are unknown. The ECME, sharing advantages with both EM and Newton–Raphson algorithms, is an extension of ECM, which itself is an extension of the EM algorithm. The ECM and ECME algorithms, which are analytically quite simple to use, are then compared based on the computational running time and the accuracy of estimation via a simulation study. The results demonstrate that the ECME is efficient and usable in practice. We also show how our method can be applied to the Wolfer's sunspot data.  相似文献   

4.
Parametric incomplete data models defined by ordinary differential equations (ODEs) are widely used in biostatistics to describe biological processes accurately. Their parameters are estimated on approximate models, whose regression functions are evaluated by a numerical integration method. Accurate and efficient estimations of these parameters are critical issues. This paper proposes parameter estimation methods involving either a stochastic approximation EM algorithm (SAEM) in the maximum likelihood estimation, or a Gibbs sampler in the Bayesian approach. Both algorithms involve the simulation of non-observed data with conditional distributions using Hastings–Metropolis (H–M) algorithms. A modified H–M algorithm, including an original local linearization scheme to solve the ODEs, is proposed to reduce the computational time significantly. The convergence on the approximate model of all these algorithms is proved. The errors induced by the numerical solving method on the conditional distribution, the likelihood and the posterior distribution are bounded. The Bayesian and maximum likelihood estimation methods are illustrated on a simulated pharmacokinetic nonlinear mixed-effects model defined by an ODE. Simulation results illustrate the ability of these algorithms to provide accurate estimates.  相似文献   

5.
In lifetime analysis of electric transformers, the maximum likelihood estimation has been proposed with the EM algorithm. However, it is not clear whether the EM algorithm offers a better solution compared to the simpler Newton-Raphson (NR) algorithm. In this article, the first objective is a systematic comparison of the EM algorithm with the NR algorithm in terms of convergence performance. The second objective is to examine the performance of Akaike's information criterion (AIC) for selecting a suitable distribution among candidate models via simulations. These methods are illustrated through the electric power transformer dataset.  相似文献   

6.
ABSTRACT

We propose a new unsupervised learning algorithm to fit regression mixture models with unknown number of components. The developed approach consists in a penalized maximum likelihood estimation carried out by a robust expectation–maximization (EM)-like algorithm. We derive it for polynomial, spline, and B-spline regression mixtures. The proposed learning approach is unsupervised: (i) it simultaneously infers the model parameters and the optimal number of the regression mixture components from the data as the learning proceeds, rather than in a two-fold scheme as in standard model-based clustering using afterward model selection criteria, and (ii) it does not require accurate initialization unlike the standard EM for regression mixtures. The developed approach is applied to curve clustering problems. Numerical experiments on simulated and real data show that the proposed algorithm performs well and provides accurate clustering results, and confirm its benefit for practical applications.  相似文献   

7.
The EM algorithm is a popular method for computing maximum likelihood estimates. One of its drawbacks is that it does not produce standard errors as a by-product. We consider obtaining standard errors by numerical differentiation. Two approaches are considered. The first differentiates the Fisher score vector to yield the Hessian of the log-likelihood. The second differentiates the EM operator and uses an identity that relates its derivative to the Hessian of the log-likelihood. The well-known SEM algorithm uses the second approach. We consider three additional algorithms: one that uses the first approach and two that use the second. We evaluate the complexity and precision of these three and the SEM in algorithm seven examples. The first is a single-parameter example used to give insight. The others are three examples in each of two areas of EM application: Poisson mixture models and the estimation of covariance from incomplete data. The examples show that there are algorithms that are much simpler and more accurate than the SEM algorithm. Hopefully their simplicity will increase the availability of standard error estimates in EM applications. It is shown that, as previously conjectured, a symmetry diagnostic can accurately estimate errors arising from numerical differentiation. Some issues related to the speed of the EM algorithm and algorithms that differentiate the EM operator are identified.  相似文献   

8.
传统的分层模型假设组与组之间独立,没有考虑组之间的相关性。而以地理单元分组的数据往往具有空间依赖性,个体不仅受本地区的影响,也可能受相邻地区的影响。此时,传统分层模型层-2残差分布的假设不再成立。为了处理空间分层数据,将空间统计和空间计量经济模型的思想引入到分层模型中,既纳入分层的思想,又顾及空间相关性,提出了空间分层线性模型,并给出了其固定效应、方差协方差成分和空间回归参数的最大似然估计,在运用EM算法时,结合运用了Fisher得分算法。  相似文献   

9.
We compare EM, SEM, and MCMC algorithms to estimate the parameters of the Gaussian mixture model. We focus on problems in estimation arising from the likelihood function having a sharp ridge or saddle points. We use both synthetic and empirical data with those features. The comparison includes Bayesian approaches with different prior specifications and various procedures to deal with label switching. Although the solutions provided by these stochastic algorithms are more often degenerate, we conclude that SEM and MCMC may display faster convergence and improve the ability to locate the global maximum of the likelihood function.  相似文献   

10.
In this article, we propose mixtures of skew Laplace normal (SLN) distributions to model both skewness and heavy-tailedness in the neous data set as an alternative to mixtures of skew Student-t-normal (STN) distributions. We give the expectation–maximization (EM) algorithm to obtain the maximum likelihood (ML) estimators for the parameters of interest. We also analyze the mixture regression model based on the SLN distribution and provide the ML estimators of the parameters using the EM algorithm. The performance of the proposed mixture model is illustrated by a simulation study and two real data examples.  相似文献   

11.
The three-parameter asymmetric Laplace distribution (ALD) has received increasing attention in the field of quantile regression due to an important feature between its location and asymmetric parameters. On the basis of the representation of the ALD as a normal-variance–mean mixture with an exponential mixing distribution, this article develops EM and generalized EM algorithms, respectively, for computing regression quantiles of linear and nonlinear regression models. It is interesting to show that the proposed EM algorithm and the MM (Majorization–Minimization) algorithm for quantile regressions are really the same in terms of computation, since the updating formula of them are the same. This provides a good example that connects the EM and MM algorithms. Simulation studies show that the EM algorithm can successfully recover the true parameters in quantile regressions.  相似文献   

12.
Existing research on mixtures of regression models are limited to directly observed predictors. The estimation of mixtures of regression for measurement error data imposes challenges for statisticians. For linear regression models with measurement error data, the naive ordinary least squares method, which directly substitutes the observed surrogates for the unobserved error-prone variables, yields an inconsistent estimate for the regression coefficients. The same inconsistency also happens to the naive mixtures of regression estimate, which is based on the traditional maximum likelihood estimator and simply ignores the measurement error. To solve this inconsistency, we propose to use the deconvolution method to estimate the mixture likelihood of the observed surrogates. Then our proposed estimate is found by maximizing the estimated mixture likelihood. In addition, a generalized EM algorithm is also developed to find the estimate. The simulation results demonstrate that the proposed estimation procedures work well and perform much better than the naive estimates.  相似文献   

13.
The EM algorithm is a popular method for computing maximum likelihood estimates or posterior modes in models that can be formulated in terms of missing data or latent structure. Although easy implementation and stable convergence help to explain the popularity of the algorithm, its convergence is sometimes notoriously slow. In recent years, however, various adaptations have significantly improved the speed of EM while maintaining its stability and simplicity. One especially successful method for maximum likelihood is known as the parameter expanded EM or PXEM algorithm. Unfortunately, PXEM does not generally have a closed form M-step when computing posterior modes, even when the corresponding EM algorithm is in closed form. In this paper we confront this problem by adapting the one-step-late EM algorithm to PXEM to establish a fast closed form algorithm that improves on the one-step-late EM algorithm by insuring monotone convergence. We use this algorithm to fit a probit regression model and a variety of dynamic linear models, showing computational savings of as much as 99.9%, with the biggest savings occurring when the EM algorithm is the slowest to converge.  相似文献   

14.
In this paper, we consider three different mixture models based on the Birnbaum-Saunders (BS) distribution, viz., (1) mixture of two different BS distributions, (2) mixture of a BS distribution and a length-biased version of another BS distribution, and (3) mixture of a BS distribution and its length-biased version. For all these models, we study their characteristics including the shape of their density and hazard rate functions. For the maximum likelihood estimation of the model parameters, we use the EM algorithm. For the purpose of illustration, we analyze two data sets related to enzyme and depressive condition problems. In the case of the enzyme data, it is shown that Model 1 provides the best fit, while for the depressive condition data, it is shown all three models fit well with Model 3 providing the best fit.  相似文献   

15.
In this article, a general approach to latent variable models based on an underlying generalized linear model (GLM) with factor analysis observation process is introduced. We call these models Generalized Linear Factor Models (GLFM). The observations are produced from a general model framework that involves observed and latent variables that are assumed to be distributed in the exponential family. More specifically, we concentrate on situations where the observed variables are both discretely measured (e.g., binomial, Poisson) and continuously distributed (e.g., gamma). The common latent factors are assumed to be independent with a standard multivariate normal distribution. Practical details of training such models with a new local expectation-maximization (EM) algorithm, which can be considered as a generalized EM-type algorithm, are also discussed. In conjunction with an approximated version of the Fisher score algorithm (FSA), we show how to calculate maximum likelihood estimates of the model parameters, and to yield inferences about the unobservable path of the common factors. The methodology is illustrated by an extensive Monte Carlo simulation study and the results show promising performance.  相似文献   

16.
Abstract

Recently, the study of the lifetime of systems in reliability and survival analysis in the presence of several causes of failure (competing risks) has attracted attention in the literature. In this paper, series and parallel systems with exponential lifetime for each item of the system are considered. Several causes of failure independently affect lifetime distributions and observations of failure times of the systems are considered under progressive Type-II censored scheme. For series systems, the maximum likelihood estimates of parameters are computed and confidence intervals for parameters of the model are obtained using Fisher information matrix. For parallel systems, the generalized EM algorithm which uses the Newton-Raphson algorithm inside the EM algorithm is used to compute the maximum likelihood estimates of parameters. Also, the standard errors of the maximum likelihood estimates are computed by using the supplemented EM algorithm. The simulation study confirms the good performance of the introduced approach.  相似文献   

17.
In this article, the finite mixture model of Weibull distributions is studied, the identifiability of the model with m components is proven, and the parameter estimators for the case of two components resulted by several algorithms are compared. The parameter estimators are obtained with maximum likelihood performing calculations with different algorithms: expectation-maximization (EM), Fisher scoring, backfitting, optimization of k-nearest neighbor approach, and random walk algorithm using Monte Carlo simulation. The Akaike information criterion and the log-likelihood value are used to compare models. In general, the proposed random walk algorithm shows better performance in mean square error and bias. Finally, the results are applied to electronic component lifetime data.  相似文献   

18.
Estimators derived from the expectation‐maximization (EM) algorithm are not robust since they are based on the maximization of the likelihood function. We propose an iterative proximal‐point algorithm based on the EM algorithm to minimize a divergence criterion between a mixture model and the unknown distribution that generates the data. The algorithm estimates in each iteration the proportions and the parameters of the mixture components in two separate steps. Resulting estimators are generally robust against outliers and misspecification of the model. Convergence properties of our algorithm are studied. The convergence of the introduced algorithm is discussed on a two‐component Weibull mixture entailing a condition on the initialization of the EM algorithm in order for the latter to converge. Simulations on Gaussian and Weibull mixture models using different statistical divergences are provided to confirm the validity of our work and the robustness of the resulting estimators against outliers in comparison to the EM algorithm. An application to a dataset of velocities of galaxies is also presented. The Canadian Journal of Statistics 47: 392–408; 2019 © 2019 Statistical Society of Canada  相似文献   

19.
The EM algorithm and its extensions are very popular tools for maximum likelihood estimation in incomplete data setting. However, one of the limitations of these methods is their slow convergence. The PX-EM (parameter-expanded EM) algorithm was proposed by Liu, Rubin and Wu to make EM much faster. On the other hand, stochastic versions of EM are powerful alternatives of EM when the E-step is untractable in a closed form. In this paper we propose the PX-SAEM which is a parameter expansion version of the so-called SAEM (Stochastic Approximation version of EM). PX-SAEM is shown to accelerate SAEM and improve convergence toward the maximum likelihood estimate in a parametric framework. Numerical examples illustrate the behavior of PX-SAEM in linear and nonlinear mixed effects models.  相似文献   

20.
The Expectation–Maximization (EM) algorithm is a very popular technique for maximum likelihood estimation in incomplete data models. When the expectation step cannot be performed in closed form, a stochastic approximation of EM (SAEM) can be used. Under very general conditions, the authors have shown that the attractive stationary points of the SAEM algorithm correspond to the global and local maxima of the observed likelihood. In order to avoid convergence towards a local maxima, a simulated annealing version of SAEM is proposed. An illustrative application to the convolution model for estimating the coefficients of the filter is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号