首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
Normal residual is one of the usual assumptions in autoregressive model but sometimes in practice we are faced with non-negative residuals. In this paper, we have derived modified maximum likelihood estimators of parameters of the residuals and autoregressive coefficient. Also asymptotic distribution of modified maximum likelihood estimators in both stationary and non-stationary models are computed. So that, we can derive asymptotic distribution of unit root, Vuong's and Cox's tests statistics in stationary situation. Using simulation, it shows that Akaike information criterion and Vuong's test work to select the optimal autoregressive model with non-negative residuals. Sometimes Vuong's test select two competing models as equivalent models. These models may be suitable or unsuitable equivalent models. So we consider Cox's test to make inference after model selection. Kolmogorov–Smirnov test confirms our results. Also we have computed tracking interval for competing models to choosing between two close competing models when Vuong's test and Cox's test cannot detect the differences.  相似文献   

2.
Model selection aims to find the best model. Most of the usual criteria are based on goodness of fit and parsimony and aim to maximize a transformed version of likelihood. The situation is less clear when two models are equivalent: are they close to the unknown true model or are they far from it? Based on simulations, we study the results of Vuong's test, Cox's test, AIC and BIC and the ability of these four tests to discriminate between models.  相似文献   

3.
Competing models arise naturally in many research fields, such as survival analysis and economics, when the same phenomenon of interest is explained by different researcher using different theories or according to different experiences. The model selection problem is therefore remarkably important because of its great importance to the subsequent inference; Inference under a misspecified or inappropriate model will be risky. Existing model selection tests such as Vuong's tests [26 Q.H. Vuong, Likelihood ratio test for model selection and non-nested hypothesis, Econometrica 57 (1989), pp. 307333. doi: 10.2307/1912557[Crossref], [Web of Science ®] [Google Scholar]] and Shi's non-degenerate tests [21 X. Shi, A non-degenerate Vuong test, Quant. Econ. 6 (2015), pp. 85121. doi: 10.3982/QE382[Crossref], [Web of Science ®] [Google Scholar]] suffer from the variance estimation and the departure of the normality of the likelihood ratios. To circumvent these dilemmas, we propose in this paper an empirical likelihood ratio (ELR) tests for model selection. Following Shi [21 X. Shi, A non-degenerate Vuong test, Quant. Econ. 6 (2015), pp. 85121. doi: 10.3982/QE382[Crossref], [Web of Science ®] [Google Scholar]], a bias correction method is proposed for the ELR tests to enhance its performance. A simulation study and a real-data analysis are provided to illustrate the performance of the proposed ELR tests.  相似文献   

4.
In this paper, we consider the setting where the observed data is incomplete. For the general situation where the number of gaps as well as the number of unobserved values in some gaps go to infinity, the asymptotic behavior of maximum likelihood estimator is not clear. We derive and investigate the asymptotic properties of maximum likelihood estimator under censorship and drive a statistic for testing the null hypothesis that the proposed non-nested models are equally close to the true model against the alternative hypothesis that one model is closer when we are faced with a life-time situation. Furthermore rewrite a normalization of a difference of Akaike criterion for estimating the difference of expected Kullback–Leibler risk between the distributions in two different models.  相似文献   

5.
We consider model selection for linear mixed-effects models with clustered structure, where conditional Kullback–Leibler (CKL) loss is applied to measure the efficiency of the selection. We estimate the CKL loss by substituting the empirical best linear unbiased predictors (EBLUPs) into random effects with model parameters estimated by maximum likelihood. Although the BLUP approach is commonly used in predicting random effects and future observations, selecting random effects to achieve asymptotic loss efficiency concerning CKL loss is challenging and has not been well studied. In this paper, we propose addressing this difficulty using a conditional generalized information criterion (CGIC) with two tuning parameters. We further consider a challenging but practically relevant situation where the number, m $$ m $$ , of clusters does not go to infinity with the sample size. Hence the random-effects variances are not consistently estimable. We show that via a novel decomposition of the CKL risk, the CGIC achieves consistency and asymptotic loss efficiency, whether m $$ m $$ is fixed or increases to infinity with the sample size. We also conduct numerical experiments to illustrate the theoretical findings.  相似文献   

6.
This paper derives Akaike information criterion (AIC), corrected AIC, the Bayesian information criterion (BIC) and Hannan and Quinn’s information criterion for approximate factor models assuming a large number of cross-sectional observations and studies the consistency properties of these information criteria. It also reports extensive simulation results comparing the performance of the extant and new procedures for the selection of the number of factors. The simulation results show the di?culty of determining which criterion performs best. In practice, it is advisable to consider several criteria at the same time, especially Hannan and Quinn’s information criterion, Bai and Ng’s ICp2 and BIC3, and Onatski’s and Ahn and Horenstein’s eigenvalue-based criteria. The model-selection criteria considered in this paper are also applied to Stock and Watson’s two macroeconomic data sets. The results differ considerably depending on the model-selection criterion in use, but evidence suggesting five factors for the first data and five to seven factors for the second data is obtainable.  相似文献   

7.
Autoregressive model is a popular method for analysing the time dependent data, where selection of order parameter is imperative. Two commonly used selection criteria are the Akaike information criterion (AIC) and the Bayesian information criterion (BIC), which are known to suffer the potential problems regarding overfit and underfit, respectively. To our knowledge, there does not exist a criterion in the literature that can satisfactorily perform under various situations. Therefore, in this paper, we focus on forecasting the future values of an observed time series and propose an adaptive idea to combine the advantages of AIC and BIC but to mitigate their weaknesses based on the concept of generalized degrees of freedom. Instead of applying a fixed criterion to select the order parameter, we propose an approximately unbiased estimator of mean squared prediction errors based on a data perturbation technique for fairly comparing between AIC and BIC. Then use the selected criterion to determine the final order parameter. Some numerical experiments are performed to show the superiority of the proposed method and a real data set of the retail price index of China from 1952 to 2008 is also applied for illustration.  相似文献   

8.
As researchers increasingly rely on linear mixed models to characterize longitudinal data, there is a need for improved techniques for selecting among this class of models which requires specification of both fixed and random effects via a mean model and variance-covariance structure. The process is further complicated when fixed and/or random effects are non nested between models. This paper explores the development of a hypothesis test to compare non nested linear mixed models based on extensions of the work begun by Sir David Cox. We assess the robustness of this approach for comparing models containing correlated measures of body fat for predicting longitudinal cardiometabolic risk.  相似文献   

9.
10.
The theoretical foundation for a number of model selection criteria is established in the context of inhomogeneous point processes and under various asymptotic settings: infill, increasing domain and combinations of these. For inhomogeneous Poisson processes we consider Akaike's information criterion and the Bayesian information criterion, and in particular we identify the point process analogue of ‘sample size’ needed for the Bayesian information criterion. Considering general inhomogeneous point processes we derive new composite likelihood and composite Bayesian information criteria for selecting a regression model for the intensity function. The proposed model selection criteria are evaluated using simulations of Poisson processes and cluster point processes.  相似文献   

11.
This paper deals with a bias correction of Akaike's information criterion (AIC) for selecting variables in multivariate normal linear regression models when the true distribution of observation is an unknown non‐normal distribution. It is well known that the bias of AIC is $O(1)$ , and there are a number of the first‐order bias‐corrected AICs which improve the bias to $O(n^{-1})$ , where $n$ is the sample size. A new information criterion is proposed by slightly adjusting the first‐order bias‐corrected AIC. Although the adjustment is achieved by merely using constant coefficients, the bias of the new criterion is reduced to $O(n^{-2})$ . Then, a variance of the new criterion is also improved. Through numerical experiments, we verify that our criterion is superior to others. The Canadian Journal of Statistics 39: 126–146; 2011 © 2011 Statistical Society of Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号