首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article deals with testing inference in the class of beta regression models with varying dispersion. We focus on inference in small samples. We perform a numerical analysis in order to evaluate the sizes and powers of different tests. We consider the likelihood ratio test, two adjusted likelihood ratio tests proposed by Ferrari and Pinheiro [Improved likelihood inference in beta regression, J. Stat. Comput. Simul. 81 (2011), pp. 431–443], the score test, the Wald test and bootstrap versions of the likelihood ratio, score and Wald tests. We perform tests on the parameters that index the mean submodel and also on the parameters in the linear predictor of the precision submodel. Overall, the numerical evidence favours the bootstrap tests. It is also shown that the score test is considerably less size-distorted than the likelihood ratio and Wald tests. An application that uses real (not simulated) data is presented and discussed.  相似文献   

2.
Regression analyses are commonly performed with doubly limited continuous dependent variables; for instance, when modeling the behavior of rates, proportions and income concentration indices. Several models are available in the literature for use with such variables, one of them being the unit gamma regression model. In all such models, parameter estimation is typically performed using the maximum likelihood method and testing inferences on the model''s parameters are usually based on the likelihood ratio test. Such a test can, however, deliver quite imprecise inferences when the sample size is small. In this paper, we propose two modified likelihood ratio test statistics for use with the unit gamma regressions that deliver much more accurate inferences when the number of data points in small. Numerical (i.e. simulation) evidence is presented for both fixed dispersion and varying dispersion models, and also for tests that involve nonnested models. We also present and discuss two empirical applications.  相似文献   

3.
The inflated beta regression model aims to enable the modeling of responses in the intervals (0, 1], [0, 1), or [0, 1]. In this model, hypothesis testing is often performed based on the likelihood ratio statistic. The critical values are obtained from asymptotic approximations, which may lead to distortions of size in small samples. In this sense, this article proposes the bootstrap Bartlett correction to the statistic of likelihood ratio in the inflated beta regression model. The proposed adjustment only requires a simple Monte Carlo simulation. Through extensive Monte Carlo simulations the finite sample performance (size and power) of the proposed corrected test is compared to the usual likelihood ratio test and the Skovgaard adjustment already proposed in the literature. The numerical results evidence that inference based on the proposed correction is much more reliable than that based on the usual likelihood ratio statistics and the Skovgaard adjustment. At the end of the work, an application to real data is also presented.  相似文献   

4.
We consider the issue of performing accurate small-sample likelihood-based inference in beta regression models, which are useful for modelling continuous proportions that are affected by independent variables. We derive small-sample adjustments to the likelihood ratio statistic in this class of models. The adjusted statistics can be easily implemented from standard statistical software. We present Monte Carlo simulations showing that inference based on the adjusted statistics we propose is much more reliable than that based on the usual likelihood ratio statistic. A real data example is presented.  相似文献   

5.
The paper considers a significance test of regression variables in the high-dimensional linear regression model when the dimension of the regression variables p, together with the sample size n, tends to infinity. Under two sightly different cases, we proved that the likelihood ratio test statistic will converge in distribution to a Gaussian random variable, and the explicit expressions of the asymptotical mean and covariance are also obtained. The simulations demonstrate that our high-dimensional likelihood ratio test method outperforms those using the traditional methods in analyzing high-dimensional data.  相似文献   

6.
Likelihood ratio tests for fixed model terms are proposed for the analysis of linear mixed models when using residual maximum likelihood estimation. Bartlett-type adjustments, using an approximate decomposition of the data, are developed for the test statistics. A simulation study is used to compare properties of the test statistics proposed, with or without adjustment, with a Wald test. A proposed test statistic constructed by dropping fixed terms from the full fixed model is shown to give a better approximation to the asymptotic χ2-distribution than the Wald test for small data sets. Bartlett adjustment is shown to improve the χ2-approximation for the proposed tests substantially.  相似文献   

7.
The importance of the normal distribution for fitting continuous data is well known. However, in many practical situations data distribution departs from normality. For example, the sample skewness and the sample kurtosis are far away from 0 and 3, respectively, which are nice properties of normal distributions. So, it is important to have formal tests of normality against any alternative. D'Agostino et al. [A suggestion for using powerful and informative tests of normality, Am. Statist. 44 (1990), pp. 316–321] review four procedures Z 2(g 1), Z 2(g 2), D and K 2 for testing departure from normality. The first two of these procedures are tests of normality against departure due to skewness and kurtosis, respectively. The other two tests are omnibus tests. An alternative to the normal distribution is a class of skew-normal distributions (see [A. Azzalini, A class of distributions which includes the normal ones, Scand. J. Statist. 12 (1985), pp. 171–178]). In this paper, we obtain a score test (W) and a likelihood ratio test (LR) of goodness of fit of the normal regression model against the skew-normal family of regression models. It turns out that the score test is based on the sample skewness and is of very simple form. The performance of these six procedures, in terms of size and power, are compared using simulations. The level properties of the three statistics LR, W and Z 2(g 1) are similar and close to the nominal level for moderate to large sample sizes. Also, their power properties are similar for small departure from normality due to skewness (γ1≤0.4). Of these, the score test statistic has a very simple form and computationally much simpler than the other two statistics. The LR statistic, in general, has highest power, although it is computationally much complex as it requires estimates of the parameters under the normal model as well as those under the skew-normal model. So, the score test may be used to test for normality against small departure from normality due to skewness. Otherwise, the likelihood ratio statistic LR should be used as it detects general departure from normality (due to both skewness and kurtosis) with, in general, largest power.  相似文献   

8.
Two-phase regression models with inequality constraints on the regression coefficients and with a small number of measurements is considered. A new test based on the likelihood ratio in linear model with inequality constraints for the presence of a change-point is proposed. Numerical approximations to the powers against various alternatives are given and compared with the powers of the likelihood ratio test in the two-phase regression models without inequality constraints, the backwards CUSUM test, and the k-linear-r-ahead recursive residuals tests. Performance of related likelihood based estimators of the change-point is briefly studied in a Monte Carlo experiment.  相似文献   

9.
A small sample simultaneous testing method is proposed for nested linear regression model. The methodology is based on the generalized likelihood ratio test which is the large sample simultaneous testing method for general nested models. The proposed test is also used for model identification.  相似文献   

10.
ABSTRACT

A frequently encountered statistical problem is to determine if the variability among k populations is heterogeneous. If the populations are measured using different scales, comparing variances may not be appropriate. In this case, comparing coefficient of variation (CV) can be used because CV is unitless. In this paper, a non-parametric test is introduced to test whether the CVs from k populations are different. With the assumption that the populations are independent normally distributed, the Miller test, Feltz and Miller test, saddlepoint-based test, log likelihood ratio test and the proposed simulated Bartlett-corrected log likelihood ratio test are derived. Simulation results show the extreme accuracy of the simulated Bartlett-corrected log likelihood ratio test if the model is correctly specified. If the model is mis-specified and the sample size is small, the proposed test still gives good results. However, with a mis-specified model and large sample size, the non-parametric test is recommended.  相似文献   

11.
To improve the goodness of fit between a regression model and observations, the model can be complicated; however, that can reduce the statistical power when the complication does not lead significantly to an improved model. In the context of two-phase (segmented) logistic regressions, the model evaluation needs to include testing for simple (one-phase) versus two-phase logistic regression models. In this article, we propose and examine a class of likelihood ratio type tests for detecting a change in logistic regression parameters that splits the model into two-phases. We show that the proposed tests, based on Shiryayev–Roberts type statistics, are on average the most powerful. The article argues in favor of a new approach for fixing Type I errors of tests when the parameters of null hypotheses are unknown. Although the suggested approach is partly based on Bayes–Factor-type testing procedures, the classical significance levels of the proposed tests are under control. We demonstrate applications of the average most powerful tests to an epidemiologic study entitled “Time to pregnancy and multiple births.”  相似文献   

12.
A regression model with a possible structural change and with a small number of measurements is considered. A priori information about the shape of the regression function is used to formulate the model as a linear regression model with inequality constraints and a likelihood ratio test for the presence of a change-point is constructed. The exact null distribution of the test statistic is given. Consistency of the test is proved when the noise level goes to zero. Numerical approximations to the powers against various alternatives are given and compared with the powers of the k-linear-r-ahead recursive residuals tests and CUSUM tests. Performance of four different estimators of the change-point is studied in a Monte Carlo experiment. An application of the procedures to some real data is also presented.  相似文献   

13.
In this paper, we consider a new mixture of varying coefficient models, in which each mixture component follows a varying coefficient model and the mixing proportions and dispersion parameters are also allowed to be unknown smooth functions. We systematically study the identifiability, estimation and inference for the new mixture model. The proposed new mixture model is rather general, encompassing many mixture models as its special cases such as mixtures of linear regression models, mixtures of generalized linear models, mixtures of partially linear models and mixtures of generalized additive models, some of which are new mixture models by themselves and have not been investigated before. The new mixture of varying coefficient model is shown to be identifiable under mild conditions. We develop a local likelihood procedure and a modified expectation–maximization algorithm for the estimation of the unknown non‐parametric functions. Asymptotic normality is established for the proposed estimator. A generalized likelihood ratio test is further developed for testing whether some of the unknown functions are constants. We derive the asymptotic distribution of the proposed generalized likelihood ratio test statistics and prove that the Wilks phenomenon holds. The proposed methodology is illustrated by Monte Carlo simulations and an analysis of a CO2‐GDP data set.  相似文献   

14.
We obtain adjustments to the profile likelihood function in Weibull regression models with and without censoring. Specifically, we consider two different modified profile likelihoods: (i) the one proposed by Cox and Reid [Cox, D.R. and Reid, N., 1987, Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society B, 49, 1–39.], and (ii) an approximation to the one proposed by Barndorff–Nielsen [Barndorff–Nielsen, O.E., 1983, On a formula for the distribution of the maximum likelihood estimator. Biometrika, 70, 343–365.], the approximation having been obtained using the results by Fraser and Reid [Fraser, D.A.S. and Reid, N., 1995, Ancillaries and third-order significance. Utilitas Mathematica, 47, 33–53.] and by Fraser et al. [Fraser, D.A.S., Reid, N. and Wu, J., 1999, A simple formula for tail probabilities for frequentist and Bayesian inference. Biometrika, 86, 655–661.]. We focus on point estimation and likelihood ratio tests on the shape parameter in the class of Weibull regression models. We derive some distributional properties of the different maximum likelihood estimators and likelihood ratio tests. The numerical evidence presented in the paper favors the approximation to Barndorff–Nielsen's adjustment.  相似文献   

15.
We deal with a general class of extreme-value regression models introduced by Barreto-Souza and Vasconcellos [Bias and skewness in a general extreme-value regression model, Comput. Statist. Data Anal. 55 (2011), pp. 1379–1393]. Our goal is to derive an adjusted likelihood ratio statistic that is approximately distributed as χ2 with a high degree of accuracy. Although the adjusted statistic requires more computational effort than its unadjusted counterpart, it is shown that the adjustment term has a simple compact form that can be easily implemented in standard statistical software. Further, we compare the finite-sample performance of the three classical tests (likelihood ratio, Wald, and score), the gradient test that has been recently proposed by Terrell [The gradient statistic, Comput. Sci. Stat. 34 (2002), pp. 206–215], and the adjusted likelihood ratio test obtained in this article. Our simulations favour the latter. Applications of our results are presented.  相似文献   

16.
We consider the issue of performing accurate small-sample testing inference in beta regression models, which are useful for modeling continuous variates that assume values in (0,1), such as rates and proportions. We derive the Bartlett correction to the likelihood ratio test statistic and also consider a bootstrap Bartlett correction. Using Monte Carlo simulations we compare the finite sample performances of the two corrected tests to that of the standard likelihood ratio test and also to its variant that employs Skovgaard's adjustment; the latter is already available in the literature. The numerical evidence favors the corrected tests we propose. We also present an empirical application.  相似文献   

17.
In this paper, we revisit the alternative outlier model of Thompson [A note on restricted maximum likelihood estimation with an alternative outlier model, J. Roy. Stat. Soc. Ser. B 47 (1985), pp. 53–55] for detecting outliers in the linear model. Gumedze et al. [A variance shift model for detection of outliers in the linear mixed model, Comput. Statist. Data Anal. 54 (2010), pp. 2128–2144] called this model the variance shift outlier model (VSOM). The basic idea behind the VSOM is to detect observations with inflated variance and isolate them for further investigation. The VSOM is appealing because it downweights an outlier in the analysis, with the weighting determined automatically as part of the estimation procedure. We set up the VSOM as a linear mixed model and then use the likelihood ratio test (LRT) statistic as an objective measure for determining whether the weighting is required, i.e. whether the observation is an outlier. We also derived one-step updates of the variance parameter estimates based on observed, expected and average information matrices to obtain one-step LRT statistics which usually require less computation. Both the fully iterated and one-step LRTs are functions of the squared standard residuals from the null model and therefore can be computed directly without the need to fit the VSOM. We investigated the properties of the likelihood ratio tests and compare them. An extension of the model to detect a group of outliers is also given. We illustrate the proposed methodology using simulated datasets and a real dataset.  相似文献   

18.
Semiparametric maximum likelihood estimation with estimating equations (SMLE) is more flexible than traditional methods; it has fewer restrictions on distributions and regression models. The required information about distribution and regression structures is incorporated in estimating equations of the SMLE to improve the estimation quality of non‐parametric methods. The likelihood of SMLE for censored data involves complicated implicit functions without closed‐form expressions, and the first derivatives of the log‐profile‐likelihood cannot be expressed as summations of independent and identically distributed random variables; it is challenging to derive asymptotic properties of the SMLE for censored data. For group‐censored data, the paper shows that all the implicit functions are well defined and obtains the asymptotic distributions of the SMLE for model parameters and lifetime distributions. With several examples the paper compares the SMLE, the regular non‐parametric likelihood estimation method and the parametric MLEs in terms of their asymptotic efficiencies, and illustrates application of SMLE. Various asymptotic distributions of the likelihood ratio statistics are derived for testing the adequacy of estimating equations and a partial set of parameters equal to some known values.  相似文献   

19.
The data collection process and the inherent population structure are the main causes for clustered data. The observations in a given cluster are correlated, and the magnitude of such correlation is often measured by the intra-cluster correlation coefficient. The intra-cluster correlation can lead to an inflated size of the standard F test in a linear model. In this paper, we propose a solution to this problem. Unlike previous adjustments, our method does not require estimation of the intra-class correlation, which is problematic especially when the number of clusters is small. Our simulation results show that the new method outperforms the existing methods.  相似文献   

20.
For normal linear models, it is generally accepted that residual maximum likelihood estimation is appropriate when covariance components require estimation. This paper considers generalized linear models in which both the mean and the dispersion are allowed to depend on unknown parameters and on covariates. For these models there is no closed form equivalent to residual maximum likelihood except in very special cases. Using a modified profile likelihood for the dispersion parameters, an adjusted score vector and adjusted information matrix are found under an asymptotic development that holds as the leverages in the mean model become small. Subsequently, the expectation of the fitted deviances is obtained directly to show that the adjusted score vector is unbiased at least to O(1/n) . Exact results are obtained in the single‐sample case. The results reduce to residual maximum likelihood estimation in the normal linear case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号