首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sample covariance matrices play a central role in numerous popular statistical methodologies, for example principal components analysis, Kalman filtering and independent component analysis. However, modern random matrix theory indicates that, when the dimension of a random vector is not negligible with respect to the sample size, the sample covariance matrix demonstrates significant deviations from the underlying population covariance matrix. There is an urgent need to develop new estimation tools in such cases with high‐dimensional data to recover the characteristics of the population covariance matrix from the observed sample covariance matrix. We propose a novel solution to this problem based on the method of moments. When the parametric dimension of the population spectrum is finite and known, we prove that the proposed estimator is strongly consistent and asymptotically Gaussian. Otherwise, we combine the first estimation method with a cross‐validation procedure to select the unknown model dimension. Simulation experiments demonstrate the consistency of the proposed procedure. We also indicate possible extensions of the proposed estimator to the case where the population spectrum has a density.  相似文献   

2.
In this article, we consider the problem of testing (a) sphericity and (b) intraclass covariance structure under a growth curve model. The maximum likelihood estimator (MLE) for the mean in a growth curve model is a weighted estimator with the inverse of the sample covariance matrix which is unstable for large p close to N and singular for p larger than N. The MLE for the covariance matrix is based on the MLE for the mean, which can be very poor for p close to N. For both structures (a) and (b), we modify the MLE for the mean to an unweighted estimator and based on this estimator we propose a new estimator for the covariance matrix. This new estimator leads to new tests for (a) and (b). We also propose two other tests for each structure, which are just based on the sample covariance matrix.

To compare the performance of all four tests we compute for each structure (a) and (b) the attained significance level and the empirical power. We show that one of the tests based on the sample covariance matrix is better than the likelihood ratio test based on the MLE.  相似文献   


3.
The problem of estimation of the mean vector of a multivariate normal distribution with unknown covariance matrix, under uncertain prior information (UPI) that the component mean vectors are equal, is considered. The shrinkage preliminary test maximum likelihood estimator (SPTMLE) for the parameter vector is proposed. The risk and covariance matrix of the proposed estimato are derived and parameter range in which SPTMLE dominates the usual preliminary test maximum likelihood estimator (PTMLE) is investigated. It is shown that the proposed estimator provides a wider range than the usual premilinary test estimator in which it dominates the classical estimator. Further, the SPTMLE has more appropriate size for the preliminary test than the PTMLE.  相似文献   

4.
Asymptotically valid inference in linear regression models is easily achieved under mild conditions using the well-known Eicker–White heteroskedasticity–robust covariance matrix estimator or one of its variant. In finite sample however, such inferences can suffer from substantial size distortion. Indeed, it is well established in the literature that the finite sample accuracy of a test may depend on which variant of the Eicker–White estimator is used, on the underlying data generating process (DGP) and on the desired level of the test.

This paper develops a new variant of the Eicker–White estimator which explicitly aims to minimize the finite sample null error in rejection probability (ERP) of the test. This is made possible by selecting the transformation of the squared residuals which results in the smallest possible ERP through a numerical algorithm based on the wild bootstrap. Monte Carlo evidence indicates that this new procedure achieves a level of robustness to the DGP, sample size and nominal testing level unequaled by any other Eicker–White estimator based asymptotic test.  相似文献   


5.
This paper shows the impact of underestimation of variance of an estima-tor when first observation is left untransformed to simplify the computational procedure. In fact, the bias of the variance is not diminishing even for large sample size for the model considered. By partitioning the covariance matrix into two parts, this paper explains why least square estimator with untrans-formed first observation shows such a consequence. To demonstrate this, an exact GLS estimator is developed by modifying an approximate estimator. Nonetheless, the computational simplicity remains same.  相似文献   

6.
We propose a test for the equality of the autocovariance functions of two independent and stationary time series. The test statistic is a quadratic form in the vector of differences of the first J + 1 autocovariances. Its asymptotic distribution is derived under the null hypothesis, and the finite-sample properties of the test, namely the bias and the power, are investigated by Monte Carlo methods. A by-product of this study is a new estimator of the covariance between two sample autocovariances which provides a positive definite covariance matrix. We establish the convergence of this estimator in the L1 norm.  相似文献   

7.
In this article, we consider a robust method of estimating a realized covariance matrix calculated as the sum of cross products of intraday high-frequency returns. According to recent articles in financial econometrics, the realized covariance matrix is essentially contaminated with market microstructure noise. Although techniques for removing noise from the matrix have been studied since the early 2000s, they have primarily investigated a low-dimensional covariance matrix with statistically significant sample sizes. We focus on noise-robust covariance estimation under converse circumstances, that is, a high-dimensional covariance matrix possibly with a small sample size. For the estimation, we utilize a statistical hypothesis test based on the characteristic that the largest eigenvalue of the covariance matrix asymptotically follows a Tracy–Widom distribution. The null hypothesis assumes that log returns are not pure noises. If a sample eigenvalue is larger than the relevant critical value, then we fail to reject the null hypothesis. The simulation results show that the estimator studied here performs better than others as measured by mean squared error. The empirical analysis shows that our proposed estimator can be adopted to forecast future covariance matrices using real data.  相似文献   

8.
This article deals with the estimation of the parametric component, which is of primary interest, in the heteroscedastic semi-varying coefficient models. Based on the bootstrap technique, we present a procedure for estimating the parameters, which can provide a reliable approximation to the asymptotic distribution of the profile least-square (PLS) estimator. Furthermore, a bootstrap-type estimator of covariance matrix is developed, which is proved to be a consistent estimator of the covariance matrix. Moreover, some simulation experiments are conducted to evaluate the finite sample performance for the proposed methodology. Finally, the Australia CPI dataset is analyzed to demonstrate the application of the methods.  相似文献   

9.
A test for choosing between a linear admissible estimator and the least squares estimator (LSE) is developed. A characterization of linear admissible estimators useful for comparing estimators is presented and necessary and sufficient conditions for superiority of a linear admissible estimator over the LS estimetor is derived for the test. The test is based on the MSE matrix superiority, but also new resl?!ts concerning covariance matrix comparisons of linear estimators are derived. Further,shown that the test of Toro - Vizcarrondo and Wailace applies iioi only the restricted least squares estimators but also to certain estimators outside this class.  相似文献   

10.
This article investigates the choice of working covariance structures in the analysis of spatially correlated observations motivated by cardiac imaging data. Through Monte Carlo simulations, we found that the choice of covariance structure affects the efficiency of the estimator and power of the test. Choosing the popular unstructured working covariance structure results in an over-inflated Type I error possibly due to a sample size not large enough relative to the number of parameters being estimated. With regard to model fit indices, Bayesian Information Criterion outperforms Akaike Information Criterion in choosing the correct covariance structure used to generate data.  相似文献   

11.
The problem of estimating a covariance matrix is considered in this paper. Using the so-called partial Iwasawa coordinates of the covariance matrix, a new improved estimator dominating the James-Stein estimator is proposed. The results of a simulation study verifies that the new estimator provides a substantial improvement in risk under Stein's loss.  相似文献   

12.
The assumption that all random errors in the linear regression model share the same variance (homoskedasticity) is often violated in practice. The ordinary least squares estimator of the vector of regression parameters remains unbiased, consistent and asymptotically normal under unequal error variances. Many practitioners then choose to base their inferences on such an estimator. The usual practice is to couple it with an asymptotically valid estimation of its covariance matrix, and then carry out hypothesis tests that are valid under heteroskedasticity of unknown form. We use numerical integration methods to compute the exact null distributions of some quasi-t test statistics, and propose a new covariance matrix estimator. The numerical results favor testing inference based on the estimator we propose.  相似文献   

13.
This article investigates an efficient estimation method for a class of switching regressions based on the characteristic function (CF). We show that with the exponential weighting function, the CF-based estimator can be achieved from minimizing a closed form distance measure. Due to the availability of the analytical structure of the asymptotic covariance, an iterative estimation procedure is developed involving the minimization of a precision measure of the asymptotic covariance matrix. Numerical examples are illustrated via a set of Monte Carlo experiments examining the implementation, finite sample property and the efficiency of the proposed estimator.  相似文献   

14.
This article is concerned with inference for the parameter vector in stationary time series models based on the frequency domain maximum likelihood estimator. The traditional method consistently estimates the asymptotic covariance matrix of the parameter estimator and usually assumes the independence of the innovation process. For dependent innovations, the asymptotic covariance matrix of the estimator depends on the fourth‐order cumulants of the unobserved innovation process, a consistent estimation of which is a difficult task. In this article, we propose a novel self‐normalization‐based approach to constructing a confidence region for the parameter vector in such models. The proposed procedure involves no smoothing parameter, and is widely applicable to a large class of long/short memory time series models with weakly dependent innovations. In simulation studies, we demonstrate favourable finite sample performance of our method in comparison with the traditional method and a residual block bootstrap approach.  相似文献   

15.
In the paper the problem of testing hypotheses for variance components in mixed linear models is considered. It is assumed that covariance matrices commute after using the usual invariance procedure with respect to the group of translations. The test for vanishing of single variance component is based on the locally best quadratic unbiased estimator of this component and rejects hypothesis if the ratio of positive and negative part of this estimator is sufficiently large. The power of this test with powers of other four tests for two-way classification models corresponding to block design is compared.  相似文献   

16.
This work is concerned with the estimation of multi-dimensional regression and the asymptotic behavior of the test involved in selecting models. The main problem with such models is that we need to know the covariance matrix of the noise to get an optimal estimator. We show in this article that if we choose to minimize the logarithm of the determinant of the empirical error covariance matrix, then we get an asymptotically optimal estimator. Moreover, under suitable assumptions, we show that this cost function leads to a very simple asymptotic law for testing the number of parameters of an identifiable and regular regression model. Numerical experiments confirm the theoretical results.  相似文献   

17.
Under non-normality, this article is concerned with testing diagonality of high-dimensional covariance matrix, which is more practical than testing sphericity and identity in high-dimensional setting. The existing testing procedure for diagonality is not robust against either the data dimension or the data distribution, producing tests with distorted type I error rates much larger than nominal levels. This is mainly due to bias from estimating some functions of high-dimensional covariance matrix under non-normality. Compared to the sphericity and identity hypotheses, the asymptotic property of the diagonality hypothesis would be more involved and we should be more careful to deal with bias. We develop a correction that makes the existing test statistic robust against both the data dimension and the data distribution. We show that the proposed test statistic is asymptotically normal without the normality assumption and without specifying an explicit relationship between the dimension p and the sample size n. Simulations show that it has good size and power for a wide range of settings.  相似文献   

18.
This paper discusses the estimation of regression parameters after summarizing the data by a covariance matrix of the concatenated vector of explanatory variables and response variable. A robust estimate of the covariance matrix leads to a robust regression estimator. An M-estimator at the covariance estimation step is studied in the paper, and the resulting regression estimator is compared to a few previously proposed robust regression estimators.  相似文献   

19.
In this paper, we investigate the properties of the Granger causality test in stationary and stable vector autoregressive models under the presence of spillover effects, that is, causality in variance. The Wald test and the WW test (the Wald test with White's proposed heteroskedasticity-consistent covariance matrix estimator imposed) are analyzed. The investigation is undertaken by using Monte Carlo simulation in which two different sample sizes and six different kinds of data-generating processes are used. The results show that the Wald test over-rejects the null hypothesis both with and without the spillover effect, and that the over-rejection in the latter case is more severe in larger samples. The size properties of the WW test are satisfactory when there is spillover between the variables. Only when there is feedback in the variance is the size of the WW test slightly affected. The Wald test is shown to have higher power than the WW test when the errors follow a GARCH(1,1) process without a spillover effect. When there is a spillover, the power of both tests deteriorates, which implies that the spillover has a negative effect on the causality tests.  相似文献   

20.
The count data model studied in the paper extends the Poisson model by al-lowing for overdispersion and serial correlation. Alternative approaches to esti-mate nuisance parameters, required for the correction of the Poisson maximum likelihood covariance matrix estimator and for a quasi-likelihood estimator, are studied. The estimators are evaluated by finite sample Monte Carlo experi-mentation. It is found that the Poisson maximum likelihood estimator with corrected covariance matrix estimators provide reliable inferences for longer time series. Overdispersion test statistics are wellbehaved, while conventional portmanteau statistics for white noise have too large sizes. Two empirical illustrations are included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号