首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper presents a methodology for model fitting and inference in the context of Bayesian models of the type f(Y | X,θ)f(X|θ)f(θ), where Y is the (set of) observed data, θ is a set of model parameters and X is an unobserved (latent) stationary stochastic process induced by the first order transition model f(X (t+1)|X (t),θ), where X (t) denotes the state of the process at time (or generation) t. The crucial feature of the above type of model is that, given θ, the transition model f(X (t+1)|X (t),θ) is known but the distribution of the stochastic process in equilibrium, that is f(X|θ), is, except in very special cases, intractable, hence unknown. A further point to note is that the data Y has been assumed to be observed when the underlying process is in equilibrium. In other words, the data is not collected dynamically over time. We refer to such specification as a latent equilibrium process (LEP) model. It is motivated by problems in population genetics (though other applications are discussed), where it is of interest to learn about parameters such as mutation and migration rates and population sizes, given a sample of allele frequencies at one or more loci. In such problems it is natural to assume that the distribution of the observed allele frequencies depends on the true (unobserved) population allele frequencies, whereas the distribution of the true allele frequencies is only indirectly specified through a transition model. As a hierarchical specification, it is natural to fit the LEP within a Bayesian framework. Fitting such models is usually done via Markov chain Monte Carlo (MCMC). However, we demonstrate that, in the case of LEP models, implementation of MCMC is far from straightforward. The main contribution of this paper is to provide a methodology to implement MCMC for LEP models. We demonstrate our approach in population genetics problems with both simulated and real data sets. The resultant model fitting is computationally intensive and thus, we also discuss parallel implementation of the procedure in special cases.  相似文献   

2.
A method is suggested to estimate posterior model probabilities and model averaged parameters via MCMC sampling under a Bayesian approach. The estimates use pooled output for J models (J>1) whereby all models are updated at each iteration. Posterior probabilities are based on averages of continuous weights obtained for each model at each iteration, while samples of averaged parameters are obtained from iteration specific averages that are based on these weights. Parallel sampling of models assists in deriving posterior densities for parameter contrasts between models and in assessing hypotheses regarding model averaged parameters. Four worked examples illustrate application of the approach, two involving fixed effect regression, and two involving random effects.  相似文献   

3.
Viewing the future order statistics as latent variables at each Gibbs sampling iteration, several Bayesian approaches to predict future order statistics based on type-II censored order statistics, X(1), X(2), …, X(r), of a size n( > r) random sample from a four-parameter generalized modified Weibull (GMW) distribution, are studied. Four parameters of the GMW distribution are first estimated via simulation study. Then various Bayesian approaches, which include the plug-in method, the Monte Carlo method, the Gibbs sampling scheme, and the MCMC procedure, are proposed to develop the prediction intervals of unobserved order statistics. Finally, four type-II censored samples are utilized to investigate the predictions.  相似文献   

4.
Markov chain Monte Carlo (MCMC) algorithms have revolutionized Bayesian practice. In their simplest form (i.e., when parameters are updated one at a time) they are, however, often slow to converge when applied to high-dimensional statistical models. A remedy for this problem is to block the parameters into groups, which are then updated simultaneously using either a Gibbs or Metropolis-Hastings step. In this paper we construct several (partially and fully blocked) MCMC algorithms for minimizing the autocorrelation in MCMC samples arising from important classes of longitudinal data models. We exploit an identity used by Chib (1995) in the context of Bayes factor computation to show how the parameters in a general linear mixed model may be updated in a single block, improving convergence and producing essentially independent draws from the posterior of the parameters of interest. We also investigate the value of blocking in non-Gaussian mixed models, as well as in a class of binary response data longitudinal models. We illustrate the approaches in detail with three real-data examples.  相似文献   

5.
On Block Updating in Markov Random Field Models for Disease Mapping   总被引:3,自引:0,他引:3  
Gaussian Markov random field (GMRF) models are commonly used to model spatial correlation in disease mapping applications. For Bayesian inference by MCMC, so far mainly single-site updating algorithms have been considered. However, convergence and mixing properties of such algorithms can be extremely poor due to strong dependencies of parameters in the posterior distribution. In this paper, we propose various block sampling algorithms in order to improve the MCMC performance. The methodology is rather general, allows for non-standard full conditionals, and can be applied in a modular fashion in a large number of different scenarios. For illustration we consider three different applications: two formulations for spatial modelling of a single disease (with and without additional unstructured parameters respectively), and one formulation for the joint analysis of two diseases. The results indicate that the largest benefits are obtained if parameters and the corresponding hyperparameter are updated jointly in one large block. Implementation of such block algorithms is relatively easy using methods for fast sampling of Gaussian Markov random fields ( Rue, 2001 ). By comparison, Monte Carlo estimates based on single-site updating can be rather misleading, even for very long runs. Our results may have wider relevance for efficient MCMC simulation in hierarchical models with Markov random field components.  相似文献   

6.
The hierarchically orthogonal functional decomposition of any measurable function η of a random vector X=(X1,?…?, Xp) consists in decomposing η(X) into a sum of increasing dimension functions depending only on a subvector of X. Even when X1,?…?, Xp are assumed to be dependent, this decomposition is unique if the components are hierarchically orthogonal. That is, two of the components are orthogonal whenever all the variables involved in one of the summands are a subset of the variables involved in the other. Setting Y=η(X), this decomposition leads to the definition of generalized sensitivity indices able to quantify the uncertainty of Y due to each dependent input in X [Chastaing G, Gamboa F, Prieur C. Generalized Hoeffding–Sobol decomposition for dependent variables – application to sensitivity analysis. Electron J Statist. 2012;6:2420–2448]. In this paper, a numerical method is developed to identify the component functions of the decomposition using the hierarchical orthogonality property. Furthermore, the asymptotic properties of the components estimation is studied, as well as the numerical estimation of the generalized sensitivity indices of a toy model. Lastly, the method is applied to a model arising from a real-world problem.  相似文献   

7.
Markov chain Monte Carlo (MCMC) methods have become popular as a basis for drawing inference from complex statistical models. Two common difficulties with MCMC algorithms are slow mixing and long run-times, which are frequently closely related. Mixing over the entire state space can often be aided by careful tuning of the chain's transition kernel. In order to preserve the algorithm's stationary distribution, however, care must be taken when updating a chain's transition kernel based on that same chain's history. In this paper we introduce a technique that allows the transition kernel of the Gibbs sampler to be updated at user specified intervals, while preserving the chain's stationary distribution. This technique seems to be beneficial both in increasing efficiency of the resulting estimates (via Rao-Blackwellization) and in reducing the run-time. A reinterpretation of the modified Gibbs sampling scheme introduced in terms of auxiliary samples allows its extension to the more general Metropolis-Hastings framework. The strategies we develop are particularly helpful when calculation of the full conditional (for a Gibbs algorithm) or of the proposal distribution (for a Metropolis-Hastings algorithm) is computationally expensive. Partial financial support from FAR 2002-3, University of Insubria is gratefully acknowledged.  相似文献   

8.
Abstract

In this article, dependence structure of a class of symmetric distributions is considered. Let X and Y be two n-dimensional random vectors having such distributions. We investigate conditions on the generators of densities of X and Y such that X is MTP2, and X and Y can be compared in the multivariate likelihood ratio order. Nonnegativity of the covariance between functions of two adjacent order statistics of X is also given.  相似文献   

9.
ABSTRACT

We present sharp bounds for expectations of generalized order statistics with random indices. The bounds are expressed in terms of logarithmic moments E X a (log max {1, X}) b of the underlying observation X. They are attainable and provide characterizations of some non trivial distributions. No restrictions are imposed on the parameters of the generalized order statistics model.  相似文献   

10.
Abstract

In this short note, a very simple proof of the Chebyshev's inequality for random vectors is given. This inequality provides a lower bound for the percentage of the population of an arbitrary random vector X with finite mean μ = E(X) and a positive definite covariance matrix V = Cov(X) whose Mahalanobis distance with respect to V to the mean μ is less than a fixed value. The main advantage of the proof is that it is a simple exercise for a first year probability course. An alternative proof based on principal components is also provided. This proof can be used to study the case of a singular covariance matrix V.  相似文献   

11.
The mixed effects model, in its various forms, is a common model in applied statistics. A useful strategy for fitting this model implements EM-type algorithms by treating the random effects as missing data. Such implementations, however, can be painfully slow when the variances of the random effects are small relative to the residual variance. In this paper, we apply the 'working parameter' approach to derive alternative EM-type implementations for fitting mixed effects models, which we show empirically can be hundreds of times faster than the common EM-type implementations. In our limited simulations, they also compare well with the routines in S-PLUS® and Stata® in terms of both speed and reliability. The central idea of the working parameter approach is to search for efficient data augmentation schemes for implementing the EM algorithm by minimizing the augmented information over the working parameter, and in the mixed effects setting this leads to a transfer of the mixed effects variances into the regression slope parameters. We also describe a variation for computing the restricted maximum likelihood estimate and an adaptive algorithm that takes advantage of both the standard and the alternative EM-type implementations.  相似文献   

12.
Linear mixed models (LMM) are frequently used to analyze repeated measures data, because they are more flexible to modelling the correlation within-subject, often present in this type of data. The most popular LMM for continuous responses assumes that both the random effects and the within-subjects errors are normally distributed, which can be an unrealistic assumption, obscuring important features of the variations present within and among the units (or groups). This work presents skew-normal liner mixed models (SNLMM) that relax the normality assumption by using a multivariate skew-normal distribution, which includes the normal ones as a special case and provides robust estimation in mixed models. The MCMC scheme is derived and the results of a simulation study are provided demonstrating that standard information criteria may be used to detect departures from normality. The procedures are illustrated using a real data set from a cholesterol study.  相似文献   

13.
In this paper, we use Markov Chain Monte Carlo (MCMC) methods in order to estimate and compare stochastic production frontier models from a Bayesian perspective. We consider a number of competing models in terms of different production functions and the distribution of the asymmetric error term. All MCMC simulations are done using the package JAGS (Just Another Gibbs Sampler), a clone of the classic BUGS package which works closely with the R package where all the statistical computations and graphics are done.  相似文献   

14.
Consider a random sample X1, X2,…, Xn, from a normal population with unknown mean and standard deviation. Only the sample size, mean and range are recorded and it is necessary to estimate the unknown population mean and standard deviation. In this paper the estimation of the mean and standard deviation is made from a Bayesian perspective by using a Markov Chain Monte Carlo (MCMC) algorithm to simulate samples from the intractable joint posterior distribution of the mean and standard deviation. The proposed methodology is applied to simulated and real data. The real data refers to the sugar content (oBRIX level) of orange juice produced in different countries.  相似文献   

15.
LetX andY be two random variables with finite expectationsE X andE Y, respectively. ThenX is said to be smaller thanY in the dilation order ifE[ϕ(X-E X)]≤E[ϕ(Y-E Y)] for any convex functionϕ for which the expectations exist. In this paper we obtain a new characterization of the dilation order. This characterization enables us to give new interpretations to the dilation order, and using them we identify conditions which imply the dilation order. A sample of applications of the new characterization is given. Partially supported by MURST 40% Program on Non-Linear Systems and Applications. Partially supported by “Gruppo Nazionale per l'Analisi Funzionale e sue Applicazioni”—CNR.  相似文献   

16.
ABSTRACT

Concomitants of order statistics are considered for the situation in which the random vectors (X 1, Y 1), (X 2, Y 2),…, (X n , Y n ) are independent but otherwise arbitrarily distributed. The joint and marginal distributions of the concomitants of order statistics and stochastic comparisons among the concomitants of order statistics are studied in this situation.  相似文献   

17.
Abstract

We introduce here the truncated version of the unified skew-normal (SUN) distributions. By considering a special truncations for both univariate and multivariate cases, we derive the joint distribution of consecutive order statistics X(r, ..., r + k) = (X(r), ..., X(r + K))T from an exchangeable n-dimensional normal random vector X. Further we show that the conditional distributions of X(r + j, ..., r + k) given X(r, ..., r + j ? 1), X(r, ..., r + k) given (X(r) > t)?and X(r, ..., r + k) given (X(r + k) < t) are special types of singular SUN distributions. We use these results to determine some measures in the reliability theory such as the mean past life (MPL) function and mean residual life (MRL) function.  相似文献   

18.
Park  Joonha  Atchadé  Yves 《Statistics and Computing》2020,30(5):1325-1345

We explore a general framework in Markov chain Monte Carlo (MCMC) sampling where sequential proposals are tried as a candidate for the next state of the Markov chain. This sequential-proposal framework can be applied to various existing MCMC methods, including Metropolis–Hastings algorithms using random proposals and methods that use deterministic proposals such as Hamiltonian Monte Carlo (HMC) or the bouncy particle sampler. Sequential-proposal MCMC methods construct the same Markov chains as those constructed by the delayed rejection method under certain circumstances. In the context of HMC, the sequential-proposal approach has been proposed as extra chance generalized hybrid Monte Carlo (XCGHMC). We develop two novel methods in which the trajectories leading to proposals in HMC are automatically tuned to avoid doubling back, as in the No-U-Turn sampler (NUTS). The numerical efficiency of these new methods compare favorably to the NUTS. We additionally show that the sequential-proposal bouncy particle sampler enables the constructed Markov chain to pass through regions of low target density and thus facilitates better mixing of the chain when the target density is multimodal.

  相似文献   

19.
Summary.  Hypoelliptic diffusion processes can be used to model a variety of phenomena in applications ranging from molecular dynamics to audio signal analysis. We study parameter estimation for such processes in situations where we observe some components of the solution at discrete times. Since exact likelihoods for the transition densities are typically not known, approximations are used that are expected to work well in the limit of small intersample times Δ t and large total observation times N  Δ t . Hypoellipticity together with partial observation leads to ill conditioning requiring a judicious combination of approximate likelihoods for the various parameters to be estimated. We combine these in a deterministic scan Gibbs sampler alternating between missing data in the unobserved solution components, and parameters. Numerical experiments illustrate asymptotic consistency of the method when applied to simulated data. The paper concludes with an application of the Gibbs sampler to molecular dynamics data.  相似文献   

20.
This article focuses on simulation-based inference for the time-deformation models directed by a duration process. In order to better capture the heavy tail property of the time series of financial asset returns, the innovation of the observation equation is subsequently assumed to have a Student-t distribution. Suitable Markov chain Monte Carlo (MCMC) algorithms, which are hybrids of Gibbs and slice samplers, are proposed for estimation of the parameters of these models. In the algorithms, the parameters of the models can be sampled either directly from known distributions or through an efficient slice sampler. The states are simulated one at a time by using a Metropolis-Hastings method, where the proposal distributions are sampled through a slice sampler. Simulation studies conducted in this article suggest that our extended models and accompanying MCMC algorithms work well in terms of parameter estimation and volatility forecast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号