首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this paper, a new bivariate negative binomial regression (BNBR) model allowing any type of correlation is defined and studied. The marginal means of the bivariate model are functions of the explanatory variables. The parameters of the bivariate regression model are estimated by using the maximum likelihood method. Some test statistics including goodness-of-fit are discussed. Two numerical data sets are used to illustrate the techniques. The BNBR model tends to perform better than the bivariate Poisson regression model, but compares well with the bivariate Poisson log-normal regression model.  相似文献   

2.
Count data often display excessive number of zero outcomes than are expected in the Poisson regression model. The zero-inflated Poisson regression model has been suggested to handle zero-inflated data, whereas the zero-inflated negative binomial (ZINB) regression model has been fitted for zero-inflated data with additional overdispersion. For bivariate and zero-inflated cases, several regression models such as the bivariate zero-inflated Poisson (BZIP) and bivariate zero-inflated negative binomial (BZINB) have been considered. This paper introduces several forms of nested BZINB regression model which can be fitted to bivariate and zero-inflated count data. The mean–variance approach is used for comparing the BZIP and our forms of BZINB regression model in this study. A similar approach was also used by past researchers for defining several negative binomial and zero-inflated negative binomial regression models based on the appearance of linear and quadratic terms of the variance function. The nested BZINB regression models proposed in this study have several advantages; the likelihood ratio tests can be performed for choosing the best model, the models have flexible forms of marginal mean–variance relationship, the models can be fitted to bivariate zero-inflated count data with positive or negative correlations, and the models allow additional overdispersion of the two dependent variables.  相似文献   

3.
A parametric modelling for interval data is proposed, assuming a multivariate Normal or Skew-Normal distribution for the midpoints and log-ranges of the interval variables. The intrinsic nature of the interval variables leads to special structures of the variance–covariance matrix, which is represented by five different possible configurations. Maximum likelihood estimation for both models under all considered configurations is studied. The proposed modelling is then considered in the context of analysis of variance and multivariate analysis of variance testing. To access the behaviour of the proposed methodology, a simulation study is performed. The results show that, for medium or large sample sizes, tests have good power and their true significance level approaches nominal levels when the constraints assumed for the model are respected; however, for small samples, sizes close to nominal levels cannot be guaranteed. Applications to Chinese meteorological data in three different regions and to credit card usage variables for different card designations, illustrate the proposed methodology.  相似文献   

4.
This paper introduces several forms of nested bivariate zero-inflated generalized Poisson (BZIGP) regression model which can be fitted to bivariate and zero-inflated count data. The main advantage of having several forms of BZIGP regression model is that they are nested and allow likelihood ratio test to be performed for choosing the best model. In addition, the BZIGP regression models have flexible forms of marginal mean–variance relationship, can be fitted to bivariate and zero-inflated count data with positive or negative correlations, and allow additional overdispersion of the two response variables. The BZIGP regression models are fitted to the Australian Health Survey data.  相似文献   

5.
Copula models describe the dependence structure of two random variables separately from their marginal distributions and hence are particularly useful in studying the association for bivariate survival data. Semiparametric inference for bivariate survival data based on copula models has been studied for various types of data, including complete data, right-censored data, and current status data. This article discusses the boundary effect on these inference procedures, a problem that has been neglected in the previous literature. Specifically, asymptotic distribution of the association estimator on the boundary of parameter space is derived for one-dimensional copula models. The boundary properties are applied to test independence and to study the estimation efficiency. Simulation study is conducted for the bivariate right-censored data and current status data.  相似文献   

6.
The bivariate negative binomial regression (BNBR) and the bivariate Poisson log-normal regression (BPLR) models have been used to describe count data that are over-dispersed. In this paper, a new bivariate generalized Poisson regression (BGPR) model is defined. An advantage of the new regression model over the BNBR and BPLR models is that the BGPR can be used to model bivariate count data with either over-dispersion or under-dispersion. In this paper, we carry out a simulation study to compare the three regression models when the true data-generating process exhibits over-dispersion. In the simulation experiment, we observe that the bivariate generalized Poisson regression model performs better than the bivariate negative binomial regression model and the BPLR model.  相似文献   

7.
We present a bivariate regression model for count data that allows for positive as well as negative correlation of the response variables. The covariance structure is based on the Sarmanov distribution and consists of a product of generalised Poisson marginals and a factor that depends on particular functions of the response variables. The closed form of the probability function is derived by means of the moment-generating function. The model is applied to a large real dataset on health care demand. Its performance is compared with alternative models presented in the literature. We find that our model is significantly better than or at least equivalent to the benchmark models. It gives insights into influences on the variance of the response variables.  相似文献   

8.
In this paper we study some problems associated with count data from a bivariate Poisson distribution, in which the marginal means are functions of explanatory variables. The estimates of these regression coefficients are developed under a variety of conditions: unrestricted linear model; parallelism of the regression planes; the coincidence of the regression planes. Tests are also developed for the validity of hypotheses involved in these models. The techniques are illustrated using simulated data.  相似文献   

9.
The article develops a semiparametric estimation method for the bivariate count data regression model. We develop a series expansion approach in which dependence between count variables is introduced by means of stochastically related unobserved heterogeneity components, and in which, unlike existing commonly used models, positive as well as negative correlations are allowed. Extensions that accommodate excess zeros, censored data, and multivariate generalizations are also given. Monte Carlo experiments and an empirical application to tobacco use confirms that the model performs well relative to existing bivariate models, in terms of various statistical criteria and in capturing the range of correlation among dependent variables. This article has supplementary materials online.  相似文献   

10.
Generalized linear models are well-established generalizations of the linear models used for regression and analysis of variance. They allow flexible mean structures and general distributions, other than the linear link and normal response assumed in regression. Further enhancements using ideas from multivariate analysis improve power and precision by modelling dependencies between response variables. This paper focuses on the specific case of regression models for bivariate Bernoulli responses and investigates their analysis using a Bayesian approach. The important problem of renal arterial obstruction is considered, as a medical application of these models.  相似文献   

11.
The authors propose two composite likelihood estimation procedures for multivariate models with regression/univariate and dependence parameters. One is a two‐stage method based on both univariate and bivariate margins. The other estimates all the parameters simultaneously based on bivariate margins. For some special cases, the authors compare their asymptotic efficiencies with the maximum likelihood method. The performance of the two methods is reasonable, except that the first procedure is inefficient for the regression parameters under strong dependence. The second approach is generally better for the regression parameters, but less efficient for the dependence parameters under weak dependence.  相似文献   

12.
Based on a compound Poisson distribution, new bivariate regression models are introduced and studied. The parameters of the bivariate regression models are estimated by using the maximum likelihood method. Two applications on real datasets are presented to illustrate the models. The results show that these models are compatible to other bivariate Poisson models.  相似文献   

13.
Methods for linear regression with multivariate response variables are well described in statistical literature. In this study we conduct a theoretical evaluation of the expected squared prediction error in bivariate linear regression where one of the response variables contains missing data. We make the assumption of known covariance structure for the error terms. On this basis, we evaluate three well-known estimators: standard ordinary least squares, generalized least squares, and a James–Stein inspired estimator. Theoretical risk functions are worked out for all three estimators to evaluate under which circumstances it is advantageous to take the error covariance structure into account.  相似文献   

14.
In this paper, we propose a hidden Markov model for the analysis of the time series of bivariate circular observations, by assuming that the data are sampled from bivariate circular densities, whose parameters are driven by the evolution of a latent Markov chain. The model segments the data by accounting for redundancies due to correlations along time and across variables. A computationally feasible expectation maximization (EM) algorithm is provided for the maximum likelihood estimation of the model from incomplete data, by treating the missing values and the states of the latent chain as two different sources of incomplete information. Importance-sampling methods facilitate the computation of bootstrap standard errors of the estimates. The methodology is illustrated on a bivariate time series of wind and wave directions and compared with popular segmentation models for bivariate circular data, which ignore correlations across variables and/or along time.  相似文献   

15.
16.
Pettitt  A. N.  Weir  I. S.  Hart  A. G. 《Statistics and Computing》2002,12(4):353-367
A Gaussian conditional autoregressive (CAR) formulation is presented that permits the modelling of the spatial dependence and the dependence between multivariate random variables at irregularly spaced sites so capturing some of the modelling advantages of the geostatistical approach. The model benefits not only from the explicit availability of the full conditionals but also from the computational simplicity of the precision matrix determinant calculation using a closed form expression involving the eigenvalues of a precision matrix submatrix. The introduction of covariates into the model adds little computational complexity to the analysis and thus the method can be straightforwardly extended to regression models. The model, because of its computational simplicity, is well suited to application involving the fully Bayesian analysis of large data sets involving multivariate measurements with a spatial ordering. An extension to spatio-temporal data is also considered. Here, we demonstrate use of the model in the analysis of bivariate binary data where the observed data is modelled as the sign of the hidden CAR process. A case study involving over 450 irregularly spaced sites and the presence or absence of each of two species of rain forest trees at each site is presented; Markov chain Monte Carlo (MCMC) methods are implemented to obtain posterior distributions of all unknowns. The MCMC method works well with simulated data and the tree biodiversity data set.  相似文献   

17.
A bivariate integer-valued moving average (BINMA) model is proposed. The BINMA model allows for both positive and nagative correlation between the counts. This model can be seen as an inverse of the conditional duration model in the sense that short durations in a time interval correspond to a large count and vice versa. The conditional mean, variance, and covariance of the BINMA model are given. Model extensions to include explanatory variables are suggested. Using the BINMA model for AstraZeneca and Ericsson B, it is found that there is positive correlation between the stock transactions series. Empirically, we find support for the use of long-lag bivariate moving average models for the two series.  相似文献   

18.
In this paper, the generalized log-gamma regression model is modified to allow the possibility that long-term survivors may be present in the data. This modification leads to a generalized log-gamma regression model with a cure rate, encompassing, as special cases, the log-exponential, log-Weibull and log-normal regression models with a cure rate typically used to model such data. The models attempt to simultaneously estimate the effects of explanatory variables on the timing acceleration/deceleration of a given event and the surviving fraction, that is, the proportion of the population for which the event never occurs. The normal curvatures of local influence are derived under some usual perturbation schemes and two martingale-type residuals are proposed to assess departures from the generalized log-gamma error assumption as well as to detect outlying observations. Finally, a data set from the medical area is analyzed.  相似文献   

19.
Sparsity-inducing penalties are useful tools for variable selection and are also effective for regression problems where the data are functions. We consider the problem of selecting not only variables but also decision boundaries in multiclass logistic regression models for functional data, using sparse regularization. The parameters of the functional logistic regression model are estimated in the framework of the penalized likelihood method with the sparse group lasso-type penalty, and then tuning parameters for the model are selected using the model selection criterion. The effectiveness of the proposed method is investigated through simulation studies and the analysis of a gene expression data set.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号