首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article is devoted to the study of tail index estimation based on i.i.d. multivariate observations, drawn from a standard heavy-tailed distribution, that is, of which Pareto-like marginals share the same tail index. A multivariate central limit theorem for a random vector, whose components correspond to (possibly dependent) Hill estimators of the common tail index α, is established under mild conditions. We introduce the concept of (standard) heavy-tailed random vector of tail index α and show how this limit result can be used in order to build an estimator of α with small asymptotic mean squared error, through a proper convex linear combination of the coordinates. Beyond asymptotic results, simulation experiments illustrating the relevance of the approach promoted are also presented.  相似文献   

2.
3.
4.
5.
ABSTRACT

The log-normal (LN) kernel estimator of a density with support [0, ∞) was discussed by Jin and Kawczak (2003 Jin, X., Kawczak, J. (2003). Birnbaum–Saunders and lognormal kernel estimators for modelling durations in high frequency financial data. Ann. Econ. Finance 4:103124. [Google Scholar]). The contribution of this paper is to suggest a new class of LN kernel estimators using the idea of weighted distribution. The asymptotic properties of the new class of estimators are studied. Also, numerical studies based on both simulated and real data set are presented.  相似文献   

6.
Based on right-censored data from a lifetime distribution F , a smooth nonparametric estimator of the quantile function Q (p) is given by Qn(p)=h 1jjQn(t)K((t-p)/h)dt, where QR(p) denotes the product-limit quantile function. Extensive Monte Carlo simulations indicate that at fixed p this kernel-type quantile estimator has smaller mean squared error than (L(p) for a range of values of the bandwidth h. A method of selecting an "optimal" bandwidth (in the sense of small estimated mean squared error) based on the bootstrap is investigated yielding results consistent with the simulation study. The bootstrap is also used to obtain interval estimates for Q (p) after determining the optimal value of h.  相似文献   

7.
LetX 1,…,X p be p(≥2)independent random variables, where each X.has a distribution belonging to a one parameter truncated power series

distribution. The problem is to estimate simultaneously the unknown parameters under asymmetric loss developed by James and Stein (Proc. Fourth Berkeley Symp. Math. Statist. Prob. 1, 361-380). Several new classes of dominating estimators are obtained by solving a certain difference inequality.  相似文献   

8.
Heavy tail probability distributions are important in many scientific disciplines such as hydrology, geology, and physics and therefore feature heavily in statistical practice. Rather than specifying a family of heavy-tailed distributions for a given application, it is more common to use a nonparametric approach, where the distributions are classified according to the tail behavior. Through the use of the logarithm of Parzen's density-quantile function, this work proposes a consistent, flexible estimator of the tail exponent. The approach we develop is based on a Fourier series estimator and allows for separate estimates of the left and right tail exponents. The theoretical properties for the tail exponent estimator are determined, and we also provide some results of independent interest that may be used to establish weak convergence of stochastic processes. We assess the practical performance of the method by exploring its finite sample properties in simulation studies. The overall performance is competitive with classical tail index estimators, and, in contrast, with these our method obtains somewhat better results in the case of lighter heavy-tailed distributions.  相似文献   

9.
Ratio and regression estimators for a mean are considered in conjunction with certain sequential sampling schemes. An auxiliary variable is assumed present and both fixed-cost and fixed- width confidence interval stopping rules are investigated. The asymptotic distributions of the estimators are derived as well as optimal probabilities pertinent to the schemes. Comparisons are made with results of certain double sampling procedures. Estimation of the ratio of two means is also considered and the results of a Monte Carlo simulation are included.  相似文献   

10.
Nonparametric maximum likelihood estimation of decreasing and unimodal density functions based on observations subject to arbitrary right censorship is considered. The maximum likelihood estimator of both types of densities is shown to exist and is a step function. The estimators may be computed for small samples by maximizing nonlinear equations subject to linear constraints, and the SUMT algorithm for constrained nonlinear optimization is used for the necessary calculations in an example.  相似文献   

11.
In this study, we consider a robust estimation for zero-inflated Poisson autoregressive models using the minimum density power divergence estimator designed by Basu et al. [Robust and efficient estimation by minimising a density power divergence. Biometrika. 1998;85:549–559]. We show that under some regularity conditions, the proposed estimator is strongly consistent and asymptotically normal. The performance of the estimator is evaluated through Monte Carlo simulations. A real data analysis using New South Wales crime data is also provided for illustration.  相似文献   

12.
We describe a method for estimating the coefficients in a logistic regression model when the predictors are subject to measurement error and an instrumental variable is present. The proposed method is based upon the theory of factor scores taken from factor analysis. Two versions of the proposed method, a simple one and an extended one, are compared to the methods referred to by Carrol, Ruppert and Stefanski (1995) through simulation studies. Our conclusion is that the simple version performs as well as the methods from Carrol et al. (1995), and the extended version performs betterwith respect to MSE, due to a reduction of bias.  相似文献   

13.
In this paper, the simultaneous estimation of the precision parameters of k normal distributions is considered under the squared loss function in a decision-theoretic framework. Several classes of minimax estimators are derived by using the chi-square identity, and the generalized Bayes minimax estimators are developed out of the classes. It is also shown that the improvement on the unbiased estimators is characterized by the superharmonic function. This corresponds to Stein's [1981. Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9, 1135–1151] result in simultaneous estimation of normal means.  相似文献   

14.
We investigate the issue of bandwidth estimation in a functional nonparametric regression model with function-valued, continuous real-valued and discrete-valued regressors under the framework of unknown error density. Extending from the recent work of Shang (2013 Shang, H.L. (2013), ‘Bayesian Bandwidth Estimation for a Nonparametric Functional Regression Model with Unknown Error Density’, Computational Statistics &; Data Analysis, 67, 185198. doi: 10.1016/j.csda.2013.05.006[Crossref], [Web of Science ®] [Google Scholar]) [‘Bayesian Bandwidth Estimation for a Nonparametric Functional Regression Model with Unknown Error Density’, Computational Statistics &; Data Analysis, 67, 185–198], we approximate the unknown error density by a kernel density estimator of residuals, where the regression function is estimated by the functional Nadaraya–Watson estimator that admits mixed types of regressors. We derive a likelihood and posterior density for the bandwidth parameters under the kernel-form error density, and put forward a Bayesian bandwidth estimation approach that can simultaneously estimate the bandwidths. Simulation studies demonstrated the estimation accuracy of the regression function and error density for the proposed Bayesian approach. Illustrated by a spectroscopy data set in the food quality control, we applied the proposed Bayesian approach to select the optimal bandwidths in a functional nonparametric regression model with mixed types of regressors.  相似文献   

15.
The problem of Bayesian and robust Bayesian estimation with some bounded and asymmetric loss function ABL is considered for various models. The prior distribution is not exactly specified and covers the conjugate family of prior distributions. The posterior regret, most robust and conditional Γ-minimax estimators are constructed and a preliminary comparison with square-error loss and LINEX loss is presented.  相似文献   

16.
In this note we introduce a new class of boundary kernels for distribution function estimation which shows itself to be especially performing when the classical kernel distribution function estimator suffers from severe boundary problems.  相似文献   

17.
Wagner  Niklas  Marsh  Terry A. 《Statistical Papers》2004,45(4):545-561
Estimation of the tail index of stationary, fat-tailed return distributions is non-trivial since the well-known Hill estimator is optimal only under iid draws from an exact Pareto model. We provide a small sample simulation study of recently suggested adaptive estimators under ARCH-type dependence. The Hill estimator’s performance is found to be dominated by a ratio estimator. Dependence increases estimation error which can remain substantial even in larger data sets. As small sample bias is related to the magnitude of the tail index, recent standard applications may have overestimated (underestimated) the risk of assets with low (high) degrees of fat-tailedness. This paper is a shortened version of the Berkeley Research Program in Finance Working Paper RPF-295. Thanks are to the Center for Mathematical Sciences at Munich University of Technology for generously providing access to computer facilities and to participants at the IAFE 2001 Budapest, OR 2002 Klagenfurt, EIR 2002 London, DGF 2002 Cologne, FBI 2002 Karlsruhe conferences and the 2001 Wallis Workshop for helpful comments. Two anonymous referees provided helpful suggestions in streamlining the material. Niklas Wagner acknowledges a Maple program by Klaus Kiefersbeck and financial support by Deutsche Forschungsgemeinschaft (DFG).  相似文献   

18.
In some experiments, such as destructive stress testing and industrial quality control experiments, only values smaller than all previous ones are observed. Here, for such record-breaking data, kernel estimation of the cumulative distribution function and smooth density estimation is considered. For a single record-breaking sample, consistent estimation is not possible, and replication is required for global results. For m independent record-breaking samples, the proposed distribution function and density estimators are shown to be strongly consistent and asymptotically normal as m → ∞. Also, for small m, the mean squared errors and biases of the estimators and their smoothing parameters are investigated through computer simulations.  相似文献   

19.
Generalized regression estimators are considered for the survey population total of a quantitative sensitive variable based on randomized responses. Formulae are presented for ‘non-negative’ estimators of approximate mean square errors of these biased estimators when population and sample sizes are large.  相似文献   

20.
For a Gaussian stationary process with mean μ and autocovariance function γ(·), we consider to improve the usual sample autocovariances with respect to the mean squares error (MSE) loss. For the cases μ=0 and μ≠0, we propose sort of empirical Bayes type estimators Γ? and Γ?, respectively. Then their MSE improvements upon the usual sample autocovariances are evaluated in terms of the spectral density of the process. Concrete examples for them are provided. We observe that if the process is near to a unit root process the improvement becomes quite large. Thus, consideration for estimators of this type seems important in many fields, e.g., econometrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号