首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
In this paper, we derive Bartlett and Bartlett-type corrections [G.M. Cordeiro and S.L.P. Ferrari 1991, A modified score test statistic having chi-squared distribution to order n ?1 , Biometrika 78 (1991), pp. 573–582] to improve the likelihood ratio and Rao's score statistics for testing the mean parameter and the concentration parameter in the von Mises distribution. Simple formulae are suggested for the corrections valid for small and large values of the concentration parameter that do not depend on the modified Bessel functions and can be useful in practical applications.  相似文献   

3.
Clustered or correlated samples of categorical response data arise frequently in many fields of application. The method of generalized estimating equations (GEEs) introduced in Liang and Zeger [Longitudinal data analysis using generalized linear models, Biometrika 73 (1986), pp. 13–22] is often used to analyse this type of data. GEEs give consistent estimates of the regression parameters and their variance based upon the Pearson residuals. Park et al. [Alternative GEE estimation procedures for discrete longitudinal data, Comput. Stat. Data Anal. 28 (1998), pp. 243–256] considered a modification of the GEE approach using the Anscombe residual and the deviance residual. In this work, we propose to extend this idea to a family of generalized residuals. A wide simulation study is conducted for binary and Poisson correlated outcomes and also two numerical illustrations are presented.  相似文献   

4.
An important problem in statistics is the study of longitudinal data taking into account the effect of other explanatory variables such as treatments and time. In this paper, a new Bayesian approach for analysing longitudinal data is proposed. This innovative approach takes into account the possibility of having nonlinear regression structures on the mean and linear regression structures on the variance–covariance matrix of normal observations, and it is based on the modelling strategy suggested by Pourahmadi [M. Pourahmadi, Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterizations, Biometrika, 87 (1999), pp. 667–690.]. We initially extend the classical methodology to accommodate the fitting of nonlinear mean models then we propose our Bayesian approach based on a generalization of the Metropolis–Hastings algorithm of Cepeda [E.C. Cepeda, Variability modeling in generalized linear models, Unpublished Ph.D. Thesis, Mathematics Institute, Universidade Federal do Rio de Janeiro, 2001]. Finally, we illustrate the proposed methodology by analysing one example, the cattle data set, that is used to study cattle growth.  相似文献   

5.
In this paper, matrix formulae of order n?1, where n is the sample size, for the first two moments of Pearson residuals are obtained in beta regression models. Adjusted Pearson residuals are also obtained, having, to this order, expected value zero and variance one. Monte Carlo simulation results are presented illustrating the behaviour of both adjusted and unadjusted residuals.  相似文献   

6.
This article investigates the confidence regions for semiparametric nonlinear reproductive dispersion models (SNRDMs), which is an extension of nonlinear regression models. Based on local linear estimate of nonparametric component and generalized profile likelihood estimate of parameter in SNRDMs, a modified geometric framework of Bates and Wattes is proposed. Within this geometric framework, we present three kinds of improved approximate confidence regions for the parameters and parameter subsets in terms of curvatures. The work extends the previous results of Hamilton et al. [in Accounting for intrinsic nonlinearity in nonlinear regression parameter inference regions, Ann. Statist. 10, pp. 386–393, 1982], Hamilton [in Confidence regions for parameter subset in nonlinear regression, Biometrika, 73, pp. 57–64, 1986], Wei [in On confidence regions of embedded models in regular parameter families (a geometric approch), Austral. J. Statist. 36, pp. 327–338, 1994], Tang et al. [in Confidence regions in quasi-likelihood nonlinear models: a geometric approach, J. Biomath. 15, pp. 55–64, 2000b] and Zhu et al. [in On confidence regions of semiparametric nonlinear regression models, Acta. Math. Scient. 20, pp. 68–75, 2000].  相似文献   

7.
In this paper we derive general formulae for the biases to order n ?1 of the parameter estimates in a general class of nonlinear regression models, where n is the sample size. The formulae are related to those of Cordeiro and McCullagh (1991) and Paula (1992) and may be viewed as extensions of their results, Correction factors are derived for the score and deviance component residuals in these models. The practical use of such corrections is illustrated for the log-gamma model.  相似文献   

8.
We propose a new distribution, the so-called beta-Weibull geometric distribution, whose failure rate function can be decreasing, increasing or an upside-down bathtub. This distribution contains special sub-models the exponential geometric [K. Adamidis and S. Loukas, A lifetime distribution with decreasing failure rate, Statist. Probab. Lett. 39 (1998), pp. 35–42], beta exponential [S. Nadarajah and S. Kotz, The exponentiated type distributions, Acta Appl. Math. 92 (2006), pp. 97–111; The beta exponential distribution, Reliab. Eng. Syst. Saf. 91 (2006), pp. 689–697], Weibull geometric [W. Barreto-Souza, A.L. de Morais, and G.M. Cordeiro, The Weibull-geometric distribution, J. Stat. Comput. Simul. 81 (2011), pp. 645–657], generalized exponential geometric [R.B. Silva, W. Barreto-Souza, and G.M. Cordeiro, A new distribution with decreasing, increasing and upside-down bathtub failure rate, Comput. Statist. Data Anal. 54 (2010), pp. 935–944; G.O. Silva, E.M.M. Ortega, and G.M. Cordeiro, The beta modified Weibull distribution, Lifetime Data Anal. 16 (2010), pp. 409–430] and beta Weibull [S. Nadarajah, G.M. Cordeiro, and E.M.M. Ortega, General results for the Kumaraswamy-G distribution, J. Stat. Comput. Simul. (2011). DOI: 10.1080/00949655.2011.562504] distributions, among others. The density function can be expressed as a mixture of Weibull density functions. We derive expansions for the moments, generating function, mean deviations and Rénvy entropy. The parameters of the proposed model are estimated by maximum likelihood. The model fitting using envelops was conducted. The proposed distribution gives a good fit to the ozone level data in New York.  相似文献   

9.
Most biomedical research is carried out using longitudinal studies. The method of generalized estimating equations (GEEs) introduced by Liang and Zeger [Longitudinal data analysis using generalized linear models, Biometrika 73 (1986), pp. 13–22] and Zeger and Liang [Longitudinal data analysis for discrete and continuous outcomes, Biometrics 42 (1986), pp. 121–130] has become a standard method for analyzing non-normal longitudinal data. Since then, a large variety of GEEs have been proposed. However, the model diagnostic problem has not been explored intensively. Oh et al. [Modeldiagnostic plots for repeated measures data using the generalized estimating equations approach, Comput. Statist. Data Anal. 53 (2008), pp. 222–232] proposed residual plots based on the quantile–quantile (Q–Q) plots of the χ2-distribution for repeated-measures data using the GEE methodology. They considered the Pearson, Anscombe and deviance residuals. In this work, we propose to extend this graphical diagnostic using a generalized residual. A simulation study is presented as well as two examples illustrating the proposed generalized Q–Q plots.  相似文献   

10.
We propose some statistical tools for diagnosing the class of generalized Weibull linear regression models [A.A. Prudente and G.M. Cordeiro, Generalized Weibull linear models, Comm. Statist. Theory Methods 39 (2010), pp. 3739–3755]. This class of models is an alternative means of analysing positive, continuous and skewed data and, due to its statistical properties, is very competitive with gamma regression models. First, we show that the Weibull model induces ma-ximum likelihood estimators asymptotically more efficient than the gamma model. Standardized residuals are defined, and their statistical properties are examined empirically. Some measures are derived based on the case-deletion model, including the generalized Cook's distance and measures for identifying influential observations on partial F-tests. The results of a simulation study conducted to assess behaviour of the global influence approach are also presented. Further, we perform a local influence analysis under the case-weights, response and explanatory variables perturbation schemes. The Weibull, gamma and other Weibull-type regression models are fitted into three data sets to illustrate the proposed diagnostic tools. Statistical analyses indicate that the Weibull model fitted into these data yields better fits than other common alternative models.  相似文献   

11.
In this paper, we propose a method for testing absolutely regular and possibly nonstationary nonlinear time-series, with application to general AR-ARCH models. Our test statistic is based on a marked empirical process of residuals which is shown to converge to a Gaussian process with respect to the Skohorod topology. This testing procedure was first introduced by Stute [Nonparametric model checks for regression, Ann. Statist. 25 (1997), pp. 613–641] and then widely developed by Ngatchou-Wandji [Weak convergence of some marked empirical processes: Application to testing heteroscedasticity, J. Nonparametr. Stat. 14 (2002), pp. 325–339; Checking nonlinear heteroscedastic time series models, J. Statist. Plann. Inference 133 (2005), pp. 33–68; Local power of a Cramer-von Mises type test for parametric autoregressive models of order one, Compt. Math. Appl. 56(4) (2008), pp. 918–929] under more general conditions. Applications to general AR-ARCH models are given.  相似文献   

12.
Jin-Guan Lin 《Statistics》2013,47(2):105-119
Wei et al. [B.C. Wei, J.Q. Shi, W.K. Fung, and Y.Q. Hu, Testing for varying dispersion in exponential family nonlinear models, Ann. Inst. Statist. Math. 50 (1998), pp. 277–294.] developed the score diagnostics for varying dispersion in exponential family nonlinear models, such as the normal, inverse Gaussian, and gamma models, and investigated the powers of these tests through Monte Carlo simulations. In this paper, the asymptotic behaviours, including asymptotic chi-square and approximate powers under local alternatives of the score tests, are studied and examined by Monte Carlo simulations. The methods to estimate local powers of the score tests are illustrated with Grass yield data [P. McCullagh, and J.A. Nelder, Generalized Linear Models, Chapman and Hall, London (1989).].  相似文献   

13.
This article considers the maximum likelihood estimation (MLE) of a class of stationary and invertible vector autoregressive fractionally integrated moving-average (VARFIMA) processes considered in Equation (26) of Luceño [A fast likelihood approximation for vector general linear processes with long series: Application to fractional differencing, Biometrika 83 (1996), pp. 603–614] or Model A of Lobato [Consistency of the averaged cross-periodogram in long memory series, J. Time Ser. Anal. 18 (1997), pp. 137–155] where each component y i, t is a fractionally integrated process of order d i , i=1, …, r. Under the conditions outlined in Assumption 1 of this article, the conditional likelihood function of this class of VARFIMA models can be efficiently and exactly calculated with a conditional likelihood Durbin–Levinson (CLDL) algorithm proposed herein. This CLDL algorithm is based on the multivariate Durbin–Levinson algorithm of Whittle [On the fitting of multivariate autoregressions and the approximate canonical factorization of a spectral density matrix, Biometrika 50 (1963), pp. 129–134] and the conditional likelihood principle of Box and Jenkins [Time Series Analysis, Forecasting, and Control, 2nd ed., Holden-Day, San Francisco, CA]. Furthermore, the conditions in the aforementioned Assumption 1 are general enough to include the model considered in Andersen et al. [Modeling and forecasting realized volatility, Econometrica 71 (2003), 579–625] for describing the behaviour of realized volatility and the model studied in Haslett and Raftery [Space–time modelling with long-memory dependence: Assessing Ireland's wind power resource, Appl. Statist. 38 (1989), pp. 1–50] for spatial data as its special cases. As the computational cost of implementing the CLDL algorithm is much lower than that of using the algorithms proposed in Sowell [Maximum likelihood estimation of fractionally integrated time series models, Working paper, Carnegie-Mellon University], we are thus able to conduct a Monte Carlo experiment to investigate the finite sample performance of the CLDL algorithm for the 3-dimensional VARFIMA processes with the sample size of 400. The simulation results are very satisfactory and reveal the great potentials of using the CLDL method for empirical applications.  相似文献   

14.
In this article, we give an asymptotic formula of order n ?1/2, where n is the sample size, for the skewness of the distributions of the maximum likelihood estimates of the pa-ra-meters in exponencial family nonlinear models. We generalize the result by Cordeiro and Cordeiro (2001 Cordeiro , H. H. , Cordeiro , G. M. ( 2001 ). Skewness for parameters in generalized linear models . Commun. Statist. Theor. Meth. 30 : 13171334 .[Taylor & Francis Online], [Web of Science ®] [Google Scholar]). The formula is given in matrix notation and is very suitable for computer implementation and to obtain closed form expressions for a great variety of models. Some special cases and two applications are discussed.  相似文献   

15.
In this paper we discuss bias-corrected estimators for the regression and the dispersion parameters in an extended class of dispersion models (Jørgensen, 1997b). This class extends the regular dispersion models by letting the dispersion parameter vary throughout the observations, and contains the dispersion models as particular case. General formulae for the O(n−1) bias are obtained explicitly in dispersion models with dispersion covariates, which generalize previous results obtained by Botter and Cordeiro (1998), Cordeiro and McCullagh (1991), Cordeiro and Vasconcellos (1999), and Paula (1992). The practical use of the formulae is that we can derive closed-form expressions for the O(n−1) biases of the maximum likelihood estimators of the regression and dispersion parameters when the information matrix has a closed-form. Various expressions for the O(n−1) biases are given for special models. The formulae have advantages for numerical purposes because they require only a supplementary weighted linear regression. We also compare these bias-corrected estimators with two different estimators which are also bias-free to order O(n−1) that are based on bootstrap methods. These estimators are compared by simulation.  相似文献   

16.
This article gives a matrix formula for second-order covariances of maximum likelihood estimators in exponential family nonlinear models, thus generalizing the result of Cordeiro (2004 Cordeiro , G. M. ( 2004 ). Second-order covariance matrix of maximum likelihood estimates in generalized linear models . Statist. Probab. Lett. 66 : 153160 .[Crossref], [Web of Science ®] [Google Scholar]) valid for generalized linear models with known dispersion parameter. Some simulations show that the second-order covariances for exponential family nonlinear models can be quite pronounced in small to moderate sample sizes.  相似文献   

17.
In this paper we obtain asymptotic expansions up to order n−1/2 for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in exponential family nonlinear models (Cordeiro and Paula, 1989), under a sequence of Pitman alternatives. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters and for testing the dispersion parameter, thus generalising the results given in Cordeiro et al. (1994) and Ferrari et al. (1997). We also present Monte Carlo simulations in order to compare the finite-sample performance of these tests.  相似文献   

18.
19.
For a censored two-sample problem, Chen and Wang [Y.Q. Chen and M.-C. Wang, Analysis of accelerated hazards models, J. Am. Statist. Assoc. 95 (2000), pp. 608–618] introduced the accelerated hazards model. The scale-change parameter in this model characterizes the association of two groups. However, its estimator involves the unknown density in the asymptotic variance. Thus, to make an inference on the parameter, numerically intensive methods are needed. The goal of this article is to propose a simple estimation method in which estimators are asymptotically normal with a density-free asymptotic variance. Some lack-of-fit tests are also obtained from this. These tests are related to Gill–Schumacher type tests [R.D. Gill and M. Schumacher, A simple test of the proportional hazards assumption, Biometrika 74 (1987), pp. 289–300] in which the estimating functions are evaluated at two different weight functions yielding two estimators that are close to each other. Numerical studies show that for some weight functions, the estimators and tests perform well. The proposed procedures are illustrated in two applications.  相似文献   

20.
The Azzalini [A. Azzalini, A class of distributions which includes the normal ones, Scandi. J. Statist. 12 (1985), pp. 171–178.] skew normal model can be viewed as one involving normal components subject to a single linear constraint. As a natural extension of this model, we discuss skewed models involving multiple linear and nonlinear constraints and possibly non-normal components. Particular attention is devoted to a distribution called the extended two-piece normal (ETN) distribution. This model is a two-constraint extension of the two-piece normal model introduced by Kim [H.J. Kim, On a class of two-piece skew normal distributions, Statistics 39(6) (2005), pp. 537–553.]. Likelihood inference for the ETN distribution is developed and illustrated using two data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号