首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Statistical models for recurrent events are of great interest in repairable systems reliability and maintenance. The adopted model under minimal repair maintenance is frequently a nonhomogeneous Poisson process with the power law process (PLP) intensity function. Although inference for the PLP is generally based on maximum likelihood theory, some advantages of the Bayesian approach have been reported in the literature. In this paper it is proposed that the PLP intensity be reparametrized in terms of (β,η), where β is the elasticity of the mean number of events with respect to time and η is the mean number of events for the period in which the system was actually observed. It is shown that β and η are orthogonal and that the likelihood becomes proportional to a product of gamma densities. Therefore, the family of natural conjugate priors is also a product of gammas. The idea is extended to the case that several realizations of the same PLP are observed along overlapping periods of time. Some Monte Carlo simulations are provided to study the frequentist behavior of the Bayesian estimates and to compare them with the maximum likelihood estimates. The results are applied to a real problem concerning the determination of the optimal periodicity of preventive maintenance for a set of power transformers. Prior distributions are elicited for β and η based on their operational interpretation and engineering expertise.  相似文献   

2.
Just as frequentist hypothesis tests have been developed to check model assumptions, prior predictive p-values and other Bayesian p-values check prior distributions as well as other model assumptions. These model checks not only suffer from the usual threshold dependence of p-values, but also from the suppression of model uncertainty in subsequent inference. One solution is to transform Bayesian and frequentist p-values for model assessment into a fiducial distribution across the models. Averaging the Bayesian or frequentist posterior distributions with respect to the fiducial distribution can reproduce results from Bayesian model averaging or classical fiducial inference.  相似文献   

3.
Modelling of HIV dynamics in AIDS research has greatly improved our understanding of the pathogenesis of HIV-1 infection and guided for the treatment of AIDS patients and evaluation of antiretroviral therapies. Some of the model parameters may have practical meanings with prior knowledge available, but others might not have prior knowledge. Incorporating priors can improve the statistical inference. Although there have been extensive Bayesian and frequentist estimation methods for the viral dynamic models, little work has been done on making simultaneous inference about the Bayesian and frequentist parameters. In this article, we propose a hybrid Bayesian inference approach for viral dynamic nonlinear mixed-effects models using the Bayesian frequentist hybrid theory developed in Yuan [Bayesian frequentist hybrid inference, Ann. Statist. 37 (2009), pp. 2458–2501]. Compared with frequentist inference in a real example and two simulation examples, the hybrid Bayesian approach is able to improve the inference accuracy without compromising the computational load.  相似文献   

4.
We consider the problem of estimating the current failure intensity for the power-law (Weibull) process. Closed-form optimum estimators under the criteria of minimum risks as well as Pitman-closeness are derived for the failure truncated case. A unique Pitman-closest estimator which is also invariant of the choice of the loss function within a very wide class of loss functions is obtained. In the frequentist setup, no admissible estimator under these criteria are available for the time truncated scheme due to the lack of any pivotal quantity. We present a Bayesian approach, which circumvents this problem and provides a uniform solution. In the Bayesian framework, we provide an algorithm based on Markov Chain Monte Carlo (MCMC) technique, which facilitates the evaluation of the estimators. The theoretical findings are supplemented by substantial numerical investigation.  相似文献   

5.
ABSTRACT

The cost and time of pharmaceutical drug development continue to grow at rates that many say are unsustainable. These trends have enormous impact on what treatments get to patients, when they get them and how they are used. The statistical framework for supporting decisions in regulated clinical development of new medicines has followed a traditional path of frequentist methodology. Trials using hypothesis tests of “no treatment effect” are done routinely, and the p-value < 0.05 is often the determinant of what constitutes a “successful” trial. Many drugs fail in clinical development, adding to the cost of new medicines, and some evidence points blame at the deficiencies of the frequentist paradigm. An unknown number effective medicines may have been abandoned because trials were declared “unsuccessful” due to a p-value exceeding 0.05. Recently, the Bayesian paradigm has shown utility in the clinical drug development process for its probability-based inference. We argue for a Bayesian approach that employs data from other trials as a “prior” for Phase 3 trials so that synthesized evidence across trials can be utilized to compute probability statements that are valuable for understanding the magnitude of treatment effect. Such a Bayesian paradigm provides a promising framework for improving statistical inference and regulatory decision making.  相似文献   

6.
Variational Bayes (VB) estimation is a fast alternative to Markov Chain Monte Carlo for performing approximate Baesian inference. This procedure can be an efficient and effective means of analyzing large datasets. However, VB estimation is often criticised, typically on empirical grounds, for being unable to produce valid statistical inferences. In this article we refute this criticism for one of the simplest models where Bayesian inference is not analytically tractable, that is, the Bayesian linear model (for a particular choice of priors). We prove that under mild regularity conditions, VB based estimators enjoy some desirable frequentist properties such as consistency and can be used to obtain asymptotically valid standard errors. In addition to these results we introduce two VB information criteria: the variational Akaike information criterion and the variational Bayesian information criterion. We show that variational Akaike information criterion is asymptotically equivalent to the frequentist Akaike information criterion and that the variational Bayesian information criterion is first order equivalent to the Bayesian information criterion in linear regression. These results motivate the potential use of the variational information criteria for more complex models. We support our theoretical results with numerical examples.  相似文献   

7.
This paper compares the Bayesian and frequentist approaches to testing a one-sided hypothesis about a multivariate mean. First, this paper proposes a simple way to assign a Bayesian posterior probability to one-sided hypotheses about a multivariate mean. The approach is to use (almost) the exact posterior probability under the assumption that the data has multivariate normal distribution, under either a conjugate prior in large samples or under a vague Jeffreys prior. This is also approximately the Bayesian posterior probability of the hypothesis based on a suitably flat Dirichlet process prior over an unknown distribution generating the data. Then, the Bayesian approach and a frequentist approach to testing the one-sided hypothesis are compared, with results that show a major difference between Bayesian reasoning and frequentist reasoning. The Bayesian posterior probability can be substantially smaller than the frequentist p-value. A class of example is given where the Bayesian posterior probability is basically 0, while the frequentist p-value is basically 1. The Bayesian posterior probability in these examples seems to be more reasonable. Other drawbacks of the frequentist p-value as a measure of whether the one-sided hypothesis is true are also discussed.  相似文献   

8.
Since the 1960s the Bayesian case against frequentist inference has been partly built on several “classic” examples which are devised to show how frequentist inference procedures can give rise to fallacious results; see Berger and Wolpert (1988) [2]. The primary aim of this note is to revisit one of these examples, the Berger location model, that is supposed to demonstrate the fallaciousness of frequentist Confidence Interval (CI) estimation. A closer look at the example, however, reveals that the fallacious results stem primarily from the problematic nature of the example itself, since it is based on a non-regular probability model that enables one to (indirectly) assign probabilities to the unknown parameter. Moreover, the proposed confidence set is not a proper frequentist CI in the sense that it is not defined in terms of legitimate error probabilities.  相似文献   

9.
The predictive distribution is a mixture of the original distribution model and is used for predicting a future observation. Therein, the mixing distribution is the posterior distribution of the distribution parameters in the Bayesian inference. The mixture can also be computed for the frequentist inference because the Bayesian posterior distribution has the same meaning as a frequentist confidence interval. I present arguments against the concept of predictive distribution. Examples illustrate these. The most important argument is that the predictive distribution can depend on the parameterization. An improvement of the theory of the predictive distribution is recommended.  相似文献   

10.
ABSTRACT

We propose a generalization of the one-dimensional Jeffreys' rule in order to obtain non informative prior distributions for non regular models, taking into account the comments made by Jeffreys in his article of 1946. These non informatives are parameterization invariant and the Bayesian intervals have good behavior in frequentist inference. In some important cases, we can generate non informative distributions for multi-parameter models with non regular parameters. In non regular models, the Bayesian method offers a satisfactory solution to the inference problem and also avoids the problem that the maximum likelihood estimator has with these models. Finally, we obtain non informative distributions in job-search and deterministic frontier production homogenous models.  相似文献   

11.
In the life test, predicting higher failure times than the largest failure time of the observed is an important issue. Although the Rayleigh distribution is a suitable model for analyzing the lifetime of components that age rapidly over time because its failure rate function is an increasing linear function of time, the inference for a two-parameter Rayleigh distribution based on upper record values has not been addressed from the Bayesian perspective. This paper provides Bayesian analysis methods by proposing a noninformative prior distribution to analyze survival data, using a two-parameter Rayleigh distribution based on record values. In addition, we provide a pivotal quantity and an algorithm based on the pivotal quantity to predict the behavior of future survival records. We show that the proposed method is superior to the frequentist counterpart in terms of the mean-squared error and bias through Monte carlo simulations. For illustrative purposes, survival data on lung cancer patients are analyzed, and it is proved that the proposed model can be a good alternative when prior information is not given.  相似文献   

12.
Semiparametric Bayesian models are nowadays a popular tool in event history analysis. An important area of research concerns the investigation of frequentist properties of posterior inference. In this paper, we propose novel semiparametric Bayesian models for the analysis of competing risks data and investigate the Bernstein–von Mises theorem for differentiable functionals of model parameters. The model is specified by expressing the cause-specific hazard as the product of the conditional probability of a failure type and the overall hazard rate. We take the conditional probability as a smooth function of time and leave the cumulative overall hazard unspecified. A prior distribution is defined on the joint parameter space, which includes a beta process prior for the cumulative overall hazard. We first develop the large-sample properties of maximum likelihood estimators by giving simple sufficient conditions for them to hold. Then, we show that, under the chosen priors, the posterior distribution for any differentiable functional of interest is asymptotically equivalent to the sampling distribution derived from maximum likelihood estimation. A simulation study is provided to illustrate the coverage properties of credible intervals on cumulative incidence functions.  相似文献   

13.
It has long been asserted that in univariate location-scale models, when concerned with inference for either the location or scale parameter, the use of the inverse of the scale parameter as a Bayesian prior yields posterior credible sets that have exactly the correct frequentist confidence set interpretation. This claim dates to at least Peers, and has subsequently been noted by various authors, with varying degrees of justification. We present a simple, direct demonstration of the exact matching property of the posterior credible sets derived under use of this prior in the univariate location-scale model. This is done by establishing an equivalence between the conditional frequentist and posterior densities of the pivotal quantities on which conditional frequentist inferences are based.  相似文献   

14.
Bivariate exponential models have often been used for the analysis of competing risks data involving two correlated risk components. Competing risks data consist only of the time to failure and cause of failure. In situations where there is positive probability of simultaneous failure, possibly the most widely used model is the Marshall–Olkin (J. Amer. Statist. Assoc. 62 (1967) 30) bivariate lifetime model. This distribution is not absolutely continuous as it involves a singularity component. However, the likelihood function based on the competing risks data is then identifiable, and any inference, Bayesian or frequentist, can be carried out in a straightforward manner. For the analysis of absolutely continuous bivariate exponential models, standard approaches often run into difficulty due to the lack of a fully identifiable likelihood (Basu and Ghosh; Commun. Statist. Theory Methods 9 (1980) 1515). To overcome the nonidentifiability, the usual frequentist approach is based on an integrated likelihood. Such an approach is implicit in Wada et al. (Calcutta Statist. Assoc. Bull. 46 (1996) 197) who proved some related asymptotic results. We offer in this paper an alternative Bayesian approach. Since systematic prior elicitation is often difficult, the present study focuses on Bayesian analysis with noninformative priors. It turns out that with an appropriate reparameterization, standard noninformative priors such as Jeffreys’ prior and its variants can be applied directly even though the likelihood is not fully identifiable. Two noninformative priors are developed that consist of Laplace's prior for nonidentifiable parameters and Laplace's and Jeffreys's priors for identifiable parameters. The resulting Bayesian procedures possess some frequentist optimality properties as well. Finally, these Bayesian methods are illustrated with analyses of a data set originating out of a lung cancer clinical trial conducted by the Eastern Cooperative Oncology Group.  相似文献   

15.
In this paper, we proposed a new two-parameter lifetime distribution with increasing failure rate. The new distribution arises on a latent complementary risk scenario. The properties of the proposed distribution are discussed, including a formal proof of its density function and an explicit algebraic formulae for its quantiles and survival and hazard functions. Also, we have discussed inference aspects of the model proposed via Bayesian inference by using Markov chain Monte Carlo simulation. A simulation study investigates the frequentist properties of the proposed estimators obtained under the assumptions of non-informative priors. Further, some discussions on models selection criteria are given. The developed methodology is illustrated on a real data set.  相似文献   

16.
This article addresses the problem of testing whether the vectors of regression coefficients are equal for two independent normal regression models when the error variances are unknown. This problem poses severe difficulties both to the frequentist and Bayesian approaches to statistical inference. In the former approach, normal hypothesis testing theory does not apply because of the unrelated variances. In the latter, the prior distributions typically used for the parameters are improper and hence the Bayes factor-based solution cannot be used.We propose a Bayesian solution to this problem in which no subjective input is considered. We first generate “objective” proper prior distributions (intrinsic priors) for which the Bayes factor and model posterior probabilities are well defined. The posterior probability of each model is used as a model selection tool. This consistent procedure of testing hypotheses is compared with some of the frequentist approximate tests proposed in the literature.  相似文献   

17.
ABSTRACT

This paper considers posterior consistency in the context of high-dimensional variable selection using the Bayesian lasso algorithm. In a frequentist setting, consistency is perhaps the most basic property that we expect any reasonable estimator to achieve. However, in a Bayesian setting, consistency is often ignored or taken for granted, especially in more complex hierarchical Bayesian models. In this paper, we have derived sufficient conditions for posterior consistency in the Bayesian lasso model with the orthogonal design, where the number of parameters grows with the sample size.  相似文献   

18.
Abstract

In this paper, we propose a Bayesian two-stage design with changing hypothesis test by bridging a single-arm study and a double-arm randomized trial in one phase II clinical trial based on continuous endpoints rather than binary endpoints. We have also calibrated with respect to frequentist and Bayesian error rates. The proposed design minimizes the Bayesian expected sample size if the new candidate has low or high efficacy activity subject to the constraint upon error rates in both frequentist and Bayesian perspectives. Tables of designs for various combinations of design parameters are also provided.  相似文献   

19.
We propose a class of Bayesian semiparametric mixed-effects models; its distinctive feature is the randomness of the grouping of observations, which can be inferred from the data. The model can be viewed under a more natural perspective, as a Bayesian semiparametric regression model on the log-scale; hence, in the original scale, the error is a mixture of Weibull densities mixed on both parameters by a normalized generalized gamma random measure, encompassing the Dirichlet process. As an estimate of the posterior distribution of the clustering of the random-effects parameters, we consider the partition minimizing the posterior expectation of a suitable class of loss functions. As a merely illustrative application of our model we consider a Kevlar fibre lifetime dataset (with censoring). We implement an MCMC scheme, obtaining posterior credibility intervals for the predictive distributions and for the quantiles of the failure times under different stress levels. Compared to a previous parametric Bayesian analysis, we obtain narrower credibility intervals and a better fit to the data. We found that there are three main clusters among the random-effects parameters, in accordance with previous frequentist analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号