首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When measuring units are expensive or time consuming, while ranking them is relatively easy and inexpensive, it is known that ranked set sampling (RSS) is preferable to simple random sampling (SRS). Many authors have suggested several extensions of RSS. As a variation, Al-Saleh and Al-Kadiri [Double ranked set sampling, Statist. Probab. Lett. 48 (2000), pp. 205–212] introduced double ranked set sampling (DRSS) and it was extended by Al-Saleh and Al-Omari [Multistage ranked set sampling, J. Statist. Plann. Inference 102 (2002), pp. 273–286] to multistage ranked set sampling (MSRSS). The entropy of a random variable (r.v.) is a measure of its uncertainty. It is a measure of the amount of information required on the average to determine the value of a (discrete) r.v.. In this work, we discuss entropy estimation in RSS design and aforementioned extensions and compare the results with those in SRS design in terms of bias and root mean square error (RMSE). Motivated by the above observed efficiency, we continue to investigate entropy-based goodness-of-fit test for the inverse Gaussian distribution using RSS. Critical values for some sample sizes determined by means of Monte Carlo simulations are presented for each design. A Monte Carlo power analysis is performed under various alternative hypotheses in order to compare the proposed testing procedure with the existing methods. The results indicate that tests based on RSS and its extensions are superior alternatives to the entropy test based on SRS.  相似文献   

2.
Results in five areas of survey sampling dealing with the choice of the sampling design are reviewed. In Section 2, the results and discussions surrounding the purposive selection methods suggested by linear regression superpopulation models are reviewed. In Section 3, similar models to those in the previous section are considered; however, random sampling designs are considered and attention is focused on the optimal choice of πj. Then in Section 4, systematic sampling methods obtained under autocorrelated superpopulation models are reviewed. The next section examines minimax sampling designs. The work in the final section is based solely on the randomization. In Section 6 methods of sample selection which yield inclusion probabilities πj = n/N and πij = n(n - 1)/N(N - 1), but for which there are fewer than NCn possible samples, are mentioned briefly.  相似文献   

3.
Consider a sequence of independent random variables X 1, X 2,…,X n observed at n equally spaced time points where X i has a probability distribution which is known apart from the values of a parameter θ i R which may change from observation to observation. We consider the problem of estimating θ = (θ1, θ2,…,θ n ) given the observed values of X 1, X 2,…,X n . The paper proposes a prior distribution for the parameters θ for which sets of parameter values exhibiting no change, or no change apart from a few sudden large changes, or lots of small changes, all have positive prior probability. Markov chain sampling may be used to calculate Bayes estimates of the parameters. We report the results of a Monte Carlo study based on Poisson distributed data which compares the Bayes estimator with estimators obtained using cubic splines and with estimators derived from the Schwarz criterion. We conclude that the Bayes method is preferable in a minimax sense since it never produces the disastrously large errors of the other methods and pays only a modest price for this degree of safety. All three methods are used to smooth mortality rates for oesophageal cancer in Irish males aged 65–69 over the period 1955 through 1994.  相似文献   

4.
Viewing the future order statistics as latent variables at each Gibbs sampling iteration, several Bayesian approaches to predict future order statistics based on type-II censored order statistics, X(1), X(2), …, X(r), of a size n( > r) random sample from a four-parameter generalized modified Weibull (GMW) distribution, are studied. Four parameters of the GMW distribution are first estimated via simulation study. Then various Bayesian approaches, which include the plug-in method, the Monte Carlo method, the Gibbs sampling scheme, and the MCMC procedure, are proposed to develop the prediction intervals of unobserved order statistics. Finally, four type-II censored samples are utilized to investigate the predictions.  相似文献   

5.
Two new implementations of the EM algorithm are proposed for maximum likelihood fitting of generalized linear mixed models. Both methods use random (independent and identically distributed) sampling to construct Monte Carlo approximations at the E-step. One approach involves generating random samples from the exact conditional distribution of the random effects (given the data) by rejection sampling, using the marginal distribution as a candidate. The second method uses a multivariate t importance sampling approximation. In many applications the two methods are complementary. Rejection sampling is more efficient when sample sizes are small, whereas importance sampling is better with larger sample sizes. Monte Carlo approximation using random samples allows the Monte Carlo error at each iteration to be assessed by using standard central limit theory combined with Taylor series methods. Specifically, we construct a sandwich variance estimate for the maximizer at each approximate E-step. This suggests a rule for automatically increasing the Monte Carlo sample size after iterations in which the true EM step is swamped by Monte Carlo error. In contrast, techniques for assessing Monte Carlo error have not been developed for use with alternative implementations of Monte Carlo EM algorithms utilizing Markov chain Monte Carlo E-step approximations. Three different data sets, including the infamous salamander data of McCullagh and Nelder, are used to illustrate the techniques and to compare them with the alternatives. The results show that the methods proposed can be considerably more efficient than those based on Markov chain Monte Carlo algorithms. However, the methods proposed may break down when the intractable integrals in the likelihood function are of high dimension.  相似文献   

6.
In this study, we consider different sampling designs of ranked set sampling (RSS) and give empirical distribution function (EDF) estimators for each sampling designs. We provide comparative graphs for the EDFs. Using these EDFs, power of five goodness-of-fit tests are obtained by Monte Carlo simulations for Tukey's gh distributions under RSS and simple random sampling (SRS). Performances of these tests are compared with the tests based on the SRS. Also, critical values belong to these tests are obtained for different set and cycle sizes.  相似文献   

7.
In this paper, we consider the estimation of the stress–strength parameter R=P(Y<X) when X and Y are independent and both are modified Weibull distributions with the common two shape parameters but different scale parameters. The Markov Chain Monte Carlo sampling method is used for posterior inference of the reliability of the stress–strength model. The maximum-likelihood estimator of R and its asymptotic distribution are obtained. Based on the asymptotic distribution, the confidence interval of R can be obtained using the delta method. We also propose a bootstrap confidence interval of R. The Bayesian estimators with balanced loss function, using informative and non-informative priors, are derived. Different methods and the corresponding confidence intervals are compared using Monte Carlo simulations.  相似文献   

8.
Because of their multimodality, mixture posterior distributions are difficult to sample with standard Markov chain Monte Carlo (MCMC) methods. We propose a strategy to enhance the sampling of MCMC in this context, using a biasing procedure which originates from computational Statistical Physics. The principle is first to choose a “reaction coordinate”, that is, a “direction” in which the target distribution is multimodal. In a second step, the marginal log-density of the reaction coordinate with respect to the posterior distribution is estimated; minus this quantity is called “free energy” in the computational Statistical Physics literature. To this end, we use adaptive biasing Markov chain algorithms which adapt their targeted invariant distribution on the fly, in order to overcome sampling barriers along the chosen reaction coordinate. Finally, we perform an importance sampling step in order to remove the bias and recover the true posterior. The efficiency factor of the importance sampling step can easily be estimated a priori once the bias is known, and appears to be rather large for the test cases we considered.  相似文献   

9.
Gibbs sampler as a computer-intensive algorithm is an important statistical tool both in application and in theoretical work. This algorithm, in many cases, is time-consuming; this paper extends the concept of using the steady-state ranked simulated sampling approach, utilized in Monte Carlo methods by Samawi [On the approximation of multiple integrals using steady state ranked simulated sampling, 2010, submitted for publication], to improve the well-known Gibbs sampling algorithm. It is demonstrated that this approach provides unbiased estimators, in the case of estimating the means and the distribution function, and substantially improves the performance of the Gibbs sampling algorithm and convergence, which results in a significant reduction in the costs and time required to attain a certain level of accuracy. Similar to Casella and George [Explaining the Gibbs sampler, Am. Statist. 46(3) (1992), pp. 167–174], we provide some analytical properties in simple cases and compare the performance of our method using the same illustrations.  相似文献   

10.
Although Markov chain Monte Carlo methods have been widely used in many disciplines, exact eigen analysis for such generated chains has been rare. In this paper, a special Metropolis-Hastings algorithm, Metropolized independent sampling, proposed first in Hastings (1970), is studied in full detail. The eigenvalues and eigenvectors of the corresponding Markov chain, as well as a sharp bound for the total variation distance between the nth updated distribution and the target distribution, are provided. Furthermore, the relationship between this scheme, rejection sampling, and importance sampling are studied with emphasis on their relative efficiencies. It is shown that Metropolized independent sampling is superior to rejection sampling in two respects: asymptotic efficiency and ease of computation.  相似文献   

11.
A new core methodology for creating nonparametric L-quantile estimators is introduced and three new quantile L-estimators (SV1 p , SV2 p , and SV3 p ) are constructed using the new methodology. Monte Carlo simulation was used in order to investigate the performance of the new estimators for small and large samples under normal distribution and a variety of light and heavy-tailed symmetric and asymmetric distributions. The new estimators outperform, in most of the cases studied, the Harrell–Davis quantile estimator and the weighted average at X ([np]) quantile estimator.  相似文献   

12.
Estimating the proportion of true null hypotheses, π0, has attracted much attention in the recent statistical literature. Besides its apparent relevance for a set of specific scientific hypotheses, an accurate estimate of this parameter is key for many multiple testing procedures. Most existing methods for estimating π0 in the literature are motivated from the independence assumption of test statistics, which is often not true in reality. Simulations indicate that most existing estimators in the presence of the dependence among test statistics can be poor, mainly due to the increase of variation in these estimators. In this paper, we propose several data-driven methods for estimating π0 by incorporating the distribution pattern of the observed p-values as a practical approach to address potential dependence among test statistics. Specifically, we use a linear fit to give a data-driven estimate for the proportion of true-null p-values in (λ, 1] over the whole range [0, 1] instead of using the expected proportion at 1?λ. We find that the proposed estimators may substantially decrease the variance of the estimated true null proportion and thus improve the overall performance.  相似文献   

13.
The lasso is a popular technique of simultaneous estimation and variable selection in many research areas. The marginal posterior mode of the regression coefficients is equivalent to estimates given by the non-Bayesian lasso when the regression coefficients have independent Laplace priors. Because of its flexibility of statistical inferences, the Bayesian approach is attracting a growing body of research in recent years. Current approaches are primarily to either do a fully Bayesian analysis using Markov chain Monte Carlo (MCMC) algorithm or use Monte Carlo expectation maximization (MCEM) methods with an MCMC algorithm in each E-step. However, MCMC-based Bayesian method has much computational burden and slow convergence. Tan et al. [An efficient MCEM algorithm for fitting generalized linear mixed models for correlated binary data. J Stat Comput Simul. 2007;77:929–943] proposed a non-iterative sampling approach, the inverse Bayes formula (IBF) sampler, for computing posteriors of a hierarchical model in the structure of MCEM. Motivated by their paper, we develop this IBF sampler in the structure of MCEM to give the marginal posterior mode of the regression coefficients for the Bayesian lasso, by adjusting the weights of importance sampling, when the full conditional distribution is not explicit. Simulation experiments show that the computational time is much reduced with our method based on the expectation maximization algorithm and our algorithms and our methods behave comparably with other Bayesian lasso methods not only in prediction accuracy but also in variable selection accuracy and even better especially when the sample size is relatively large.  相似文献   

14.
A life distribution is said to have a weak memoryless property if its conditional probability of survival beyond a fixed time point is equal to its (unconditional) survival probability at that point. Goodness‐of‐fit testing of this notion is proposed in the current investigation, both when the fixed time point is known and when it is unknown but estimable from the data. The limiting behaviour of the proposed test statistic is obtained and the null variance is explicitly given. The empirical power of the test is evaluated for a commonly known alternative using Monte Carlo methods, showing that the test performs well. The case when the fixed time point t0 equals a quantile of the distribution F gives a distribution‐free test procedure. The procedure works even if t0 is unknown but is estimable.  相似文献   

15.
Lin et al. [Exact Bayesian variable sampling plans for the exponential distribution with progressive hybrid censoring, J. Stat. Comput. Simul. 81 (2011), pp. 873–882] claimed to have derived exact Bayesian sampling plans for exponential distributions with progressive hybrid censoring. We comment on the accuracy of the design parameters of their proposed sampling plans and the associated Bayes risks given in tables of Lin et al. [Exact Bayesian variable sampling plans for the exponential distribution with progressive hybrid censoring, J. Stat. Comput. Simul. 81 (2011), pp. 873–882]. Counter-examples to their claim are provided.  相似文献   

16.
The present work addresses the question how sampling algorithms for commonly applied copula models can be adapted to account for quasi-random numbers. Besides sampling methods such as the conditional distribution method (based on a one-to-one transformation), it is also shown that typically faster sampling methods (based on stochastic representations) can be used to improve upon classical Monte Carlo methods when pseudo-random number generators are replaced by quasi-random number generators. This opens the door to quasi-random numbers for models well beyond independent margins or the multivariate normal distribution. Detailed examples (in the context of finance and insurance), illustrations and simulations are given and software has been developed and provided in the R packages copula and qrng.  相似文献   

17.
A general saddlepoint/Monte Carlo method to approximate (conditional) multivariate probabilities is presented. This method requires a tractable joint moment generating function (m.g.f.), but does not require a tractable distribution or density. The method is easy to program and has a third-order accuracy with respect to increasing sample size in contrast to standard asymptotic approximations which are typically only accurate to the first order.

The method is most easily described in the context of a continuous regular exponential family. Here, inferences can be formulated as probabilities with respect to the joint density of the sufficient statistics or the conditional density of some sufficient statistics given the others. Analytical expressions for these densities are not generally available, and it is often not possible to simulate exactly from the conditional distributions to obtain a direct Monte Carlo approximation of the required integral. A solution to the first of these problems is to replace the intractable density by a highly accurate saddlepoint approximation. The second problem can be addressed via importance sampling, that is, an indirect Monte Carlo approximation involving simulation from a crude approximation to the true density. Asymptotic normality of the sufficient statistics suggests an obvious candidate for an importance distribution.

The more general problem considers the computation of a joint probability for a subvector of random T, given its complementary subvector, when its distribution is intractable, but its joint m.g.f. is computable. For such settings, the distribution may be tilted, maintaining T as the sufficient statistic. Within this tilted family, the computation of such multivariate probabilities proceeds as described for the exponential family setting.  相似文献   

18.
The small-sample behavior of the bootstrap is investigated as a method for estimating p values and power in the stationary first-order autoregressive model. Monte Carlo methods are used to examine the bootstrap and Student-t approximations to the true distribution of the test statistic frequently used for testing hypotheses on the underlying slope parameter. In contrast to Student's t, the results suggest that the bootstrap can accurately estimate p values and power in this model in sample sizes as small as 5–10.  相似文献   

19.
Monte Carlo methods for the exact inference have received much attention recently in complete or incomplete contingency table analysis. However, conventional Markov chain Monte Carlo, such as the Metropolis–Hastings algorithm, and importance sampling methods sometimes generate the poor performance by failing to produce valid tables. In this paper, we apply an adaptive Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm (SAMC; Liang, Liu, & Carroll, 2007), to the exact test of the goodness-of-fit of the model in complete or incomplete contingency tables containing some structural zero cells. The numerical results are in favor of our method in terms of quality of estimates.  相似文献   

20.
We consider simulation-based methods for the design of multi-stress factor accelerated life tests (ALTs) in a Bayesian decision theoretic framework. Multi-stress factor ALTs are challenging due to the increased number of simulation runs required as a result of stress factor-level combinations. We propose the use of Latin hypercube sampling to reduce the simulation cost without loss of statistical efficiency. Exploration and optimization of expected utility function is carried out by a developed algorithm that utilizes Markov chain Monte Carlo methods and nonparametric smoothing techniques. A comparison of proposed approach to a full grid simulation is provided to illustrate computational cost reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号