共查询到20条相似文献,搜索用时 15 毫秒
1.
Shujie MaLijian Yang 《Journal of statistical planning and inference》2011,141(1):204-219
A spline-backfitted kernel smoothing method is proposed for partially linear additive model. Under assumptions of stationarity and geometric mixing, the proposed function and parameter estimators are oracally efficient and fast to compute. Such superior properties are achieved by applying to the data spline smoothing and kernel smoothing consecutively. Simulation experiments with both moderate and large number of variables confirm the asymptotic results. Application to the Boston housing data serves as a practical illustration of the method. 相似文献
2.
Semi-parametric modelling of interval-valued data is of great practical importance, as exampled by applications in economic and financial data analysis. We propose a flexible semi-parametric modelling of interval-valued data by integrating the partial linear regression model based on the Center & Range method, and investigate its estimation procedure. Furthermore, we introduce a test statistic that allows one to decide between a parametric linear model and a semi-parametric model, and approximate its null asymptotic distribution based on wild Bootstrap method to obtain the critical values. Extensive simulation studies are carried out to evaluate the performance of the proposed methodology and the new test. Moreover, several empirical data sets are analysed to document its practical applications. 相似文献
3.
Juan M. Vilar-Fernández 《统计学通讯:模拟与计算》2013,42(2):311-334
The problem of predicting a future value of a time series is considered in this article. If the series follows a stationary Markov process, this can be done by nonparametric estimation of the autoregression function. Two forecasting algorithms are introduced. They only differ in the nonparametric kernel-type estimator used: the Nadaraya-Watson estimator and the local linear estimator. There are three major issues in the implementation of these algorithms: selection of the autoregressor variables, smoothing parameter selection, and computing prediction intervals. These have been tackled using recent techniques borrowed from the nonparametric regression estimation literature under dependence. The performance of these nonparametric algorithms has been studied by applying them to a collection of 43 well-known time series. Their results have been compared to those obtained using classical Box-Jenkins methods. Finally, the practical behavior of the methods is also illustrated by a detailed analysis of two data sets. 相似文献
4.
《Journal of Statistical Computation and Simulation》2012,82(4):339-351
A test statistic proposed by Li (1999) for testing the adequacy of heteroscedastic nonlinear regression models using nonparametric kernel smoothers is applied to testing for linearity in generalized linear models. Simulation results for models with centered gamma and inverse Gaussian errors are presented to illustrate the performance of the resulting test compared with log-likelihood ratio tests for specific parametric alternatives. The test is applied to a data set of coronary heart disease status (Hosmer and Lemeshow, (1990). 相似文献
5.
This paper is mainly concerned with minimax estimation in the general linear regression model y=Xβ+ε under ellipsoidal restrictions on the parameter space and quadratic loss function. We confine ourselves to estimators that are linear in the response vector y . The minimax estimators of the regression coefficient β are derived under homogeneous condition and heterogeneous condition, respectively. Furthermore, these obtained estimators are the ridge-type estimators and mean dispersion error (MDE) superior to the best linear unbiased estimator b=(X′W-1X)-1X′W-1y under some conditions. 相似文献
6.
In this article, we propose a semi-parametric mode regression for a non linear model. We use an expectation-maximization algorithm in order to estimate the regression coefficients of modal non linear regression. We also establish asymptotic properties for the proposed estimator under assumptions of the error density. We investigate the performance through a simulation study. 相似文献
7.
A Bayesian test procedure Is developed to test; the null hypothesis of no change In the regression matrix of a multivariate lin¬ear model against the alternative hypothesis of exactly one change The resulting test is based on the marginal posterior distribution of the change point; To illustrate the test procedure a numerical example using a bivariate regression model is considered. 相似文献
8.
This article discusses the estimation of the parameter function for a functional linear regression model under heavy-tailed errors' distributions and in the presence of outliers. Standard approaches of reducing the high dimensionality, which is inherent in functional data, are considered. After reducing the functional model to a standard multiple linear regression model, a weighted rank-based procedure is carried out to estimate the regression parameters. A Monte Carlo simulation and a real-world example are used to show the performance of the proposed estimator and a comparison made with the least-squares and least absolute deviation estimators. 相似文献
9.
In this article, we propose a test to check a linear relationship in varying coefficient spatial autoregressive models, in which a residual-based bootstrap procedure is suggested to approximate the null distribution of the resulting test statistic. We conduct simulation studies to assess the performance of the test, including the validity of the bootstrap approximation to the null distribution of the test statistic and the power of the test. The simulation results demonstrate that the residual-based bootstrap procedure gives very accurate estimate of the null distribution of the test statistic and the test is of satisfactory power. Furthermore, a real example is given to demonstrate the application of the proposed test. 相似文献
10.
Qiwei Liang Huajiang Li Paul Mendes Hans Roethig Kim Frost-Pineda 《Journal of applied statistics》2009,36(4):453-463
Twenty-four-hour urinary excretion of nicotine equivalents, a biomarker for exposure to cigarette smoke, has been widely used in biomedical studies in recent years. Its accurate estimate is important for examining human exposure to tobacco smoke. The objective of this article is to compare the bootstrap confidence intervals of nicotine equivalents with the standard confidence intervals derived from linear mixed model (LMM) and generalized estimation equation. We use percentile bootstrap method because it has practical value for real-life application and it works well with nicotine data. To preserve the within-subject correlation of nicotine equivalents between repeated measures, we bootstrap the repeated measures of each subject as a vector. The results indicate that the bootstrapped estimates in most cases give better estimates than the LMM and generalized estimation equation without bootstrap. 相似文献
11.
I. Gijbels A. Pope & M. P. Wand 《Journal of the Royal Statistical Society. Series B, Statistical methodology》1999,61(1):39-50
Exponential smoothing is the most common model-free means of forecasting a future realization of a time series. It requires the specification of a smoothing factor which is usually chosen from the data to minimize the average squared residual of previous one-step-ahead forecasts. In this paper we show that exponential smoothing can be put into a nonparametric regression framework and gain some interesting insights into its performance through this interpretation. We also use theoretical developments from the kernel regression field to derive, for the first time, asymptotic properties of exponential smoothing forecasters. 相似文献
12.
In this article, we develop a new and novel kernel density estimator for a sum of weighted averages from a single population based on utilizing the well defined kernel density estimator in conjunction with classic inversion theory. This idea is further developed for a kernel density estimator for the difference of weighed averages from two independent populations. The resulting estimator is “bootstrap-like” in terms of its properties with respect to the derivation of approximate confidence intervals via a “plug-in” approach. This new approach is distinct from the bootstrap methodology in that it is analytically and computationally feasible to provide an exact estimate of the distribution function through direct calculation. Thus, our approach eliminates the error due to Monte Carlo resampling that arises within the context of simulation based approaches that are oftentimes necessary in order to derive bootstrap-based confidence intervals for statistics involving weighted averages of i.i.d. random variables. We provide several examples and carry forth a simulation study to show that our kernel density estimator performs better than the standard central limit theorem based approximation in term of coverage probability. 相似文献
13.
Pierre Pinson Henrik Aa. Nielsen Henrik Madsen Torben S. Nielsen 《Statistics and Computing》2008,18(1):59-71
Short-term forecasting of wind generation requires a model of the function for the conversion of meteorological variables (mainly wind speed) to power production. Such a power curve is nonlinear and bounded, in addition to being nonstationary. Local linear regression is an appealing nonparametric approach for power curve estimation, for which the model coefficients can be tracked with recursive Least Squares (LS) methods. This may lead to an inaccurate estimate of the true power curve, owing to the assumption that a noise component is present on the response variable axis only. Therefore, this assumption is relaxed here, by describing a local linear regression with orthogonal fit. Local linear coefficients are defined as those which minimize a weighted Total Least Squares (TLS) criterion. An adaptive estimation method is introduced in order to accommodate nonstationarity. This has the additional benefit of lowering the computational costs of updating local coefficients every time new observations become available. The estimation method is based on tracking the left-most eigenvector of the augmented covariance matrix. A robustification of the estimation method is also proposed. Simulations on semi-artificial datasets (for which the true power curve is available) underline the properties of the proposed regression and related estimation methods. An important result is the significantly higher ability of local polynomial regression with orthogonal fit to accurately approximate the target regression, even though it may hardly be visible when calculating error criteria against corrupted data. 相似文献
14.
K. Żychaluk 《Journal of nonparametric statistics》2014,26(2):305-319
Many biological experiments involve data whose distribution belongs to the exponential family. Such data are often analysed using generalised linear models but this method requires specification of the link function which can have strong influence on the resulting estimate. Instead a local method based on quasi-likelihood can be used, but the choice of the smoothing parameter is crucial for its performance. A bootstrap bandwidth selection method is proposed and shown to be consistent. Examples of application to data from biological and psychometric experiments are given. 相似文献
15.
The paper considers local linear regression of a time series model with non-stationary regressors and errors. Asymptotic property of the local linear estimator is derived under a new dependence measure of non-stationary time series. We apply the local linear regression method to estimate the “time-varying” coefficients of an economic-causal model for the industrial sector of the U.S. economy. Nonparametric bootstrap test on the time-varying coefficients strongly suggests that the price/income elasticities of the U.S. durable goods demand are time-varying. 相似文献
16.
17.
In this paper, we discuss the derivation of the first and second moments for the proposed small area estimators under a multivariate linear model for repeated measures data. The aim is to use these moments to estimate the mean-squared errors (MSE) for the predicted small area means as a measure of precision. At the first stage, we derive the MSE when the covariance matrices are known. At the second stage, a method based on parametric bootstrap is proposed for bias correction and for prediction error that reflects the uncertainty when the unknown covariance is replaced by its suitable estimator. 相似文献
18.
Jie Chen 《统计学通讯:理论与方法》2013,42(10):2481-2493
In this paper, the Schwarz Information Criterion (SIC) is proposed to locate a change point in the simple linear regression model, as well as in the multiple linear regression model. The method is then applied to a financial data set, and a change point is successfully detected. 相似文献
19.
The challenge of the econometric problem in production efficiency analysis is that the efficiency scores to be analyzed are unobserved. Statistical properties have recently been discovered for a type of estimator popular in the literature, known as data envelopment analysis (DEA). This opens up a wide range of possibilities for well-grounded statistical inference about the true efficiency scores from their DEA estimates. In this paper we investigate the possibility of using existing tests for the equality of two distributions in such a context. Considering the statistical complications pertinent to our context, we consider several approaches to adapting the Li test to the context and explore their performance in terms of the size and power of the test in various Monte Carlo experiments. One of these approaches shows good performance for both the size and the power of the test, thus encouraging its use in empirical studies. We also present an empirical illustration analyzing the efficiency distributions of countries in the world, following up a recent study by Kumar and Russell (2002), and report very interesting results. 相似文献
20.
A simple method of setting linear hypotheses testable by F-tests in a general linear model when the covariance matrix has a general form and is completely unknown, is provided. With some additional conditions imposed on the covariance matrix, there exist the UMP invariant tests of certain linear hypotheses. We derive them to compare the powers with those of F-tests obtained under no restrictions on the covariance matrix. The results are illustrated in a multiple regression model with some examples. 相似文献