首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce and study the so-called Kumaraswamy generalized gamma distribution that is capable of modeling bathtub-shaped hazard rate functions. The beauty and importance of this distribution lies in its ability to model monotone and non-monotone failure rate functions, which are quite common in lifetime data analysis and reliability. The new distribution has a large number of well-known lifetime special sub-models such as the exponentiated generalized gamma, exponentiated Weibull, exponentiated generalized half-normal, exponentiated gamma, generalized Rayleigh, among others. Some structural properties of the new distribution are studied. We obtain two infinite sum representations for the moments and an expansion for the generating function. We calculate the density function of the order statistics and an expansion for their moments. The method of maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. The usefulness of the new distribution is illustrated in two real data sets.  相似文献   

2.
The Weibull distribution is one of the most important distributions in reliability. For the first time, we introduce the beta exponentiated Weibull distribution which extends recent models by Lee et al. [Beta-Weibull distribution: some properties and applications to censored data, J. Mod. Appl. Statist. Meth. 6 (2007), pp. 173–186] and Barreto-Souza et al. [The beta generalized exponential distribution, J. Statist. Comput. Simul. 80 (2010), pp. 159–172]. The new distribution is an important competitive model to the Weibull, exponentiated exponential, exponentiated Weibull, beta exponential and beta Weibull distributions since it contains all these models as special cases. We demonstrate that the density of the new distribution can be expressed as a linear combination of Weibull densities. We provide the moments and two closed-form expressions for the moment-generating function. Explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, reliability and entropies. The density of the order statistics can also be expressed as a linear combination of Weibull densities. We obtain the moments of the order statistics. The expected information matrix is derived. We define a log-beta exponentiated Weibull regression model to analyse censored data. The estimation of the parameters is approached by the method of maximum likelihood. The usefulness of the new distribution to analyse positive data is illustrated in two real data sets.  相似文献   

3.
We propose a four-parameter extended generalized gamma model, which includes as special cases some important distributions and it is very useful for modeling lifetime data. A advantage is that it can represent the error distribution for a new heteroscedastic log-odd log-logistic generalized gamma regression model. The proposed heteroscedastic regression model can be used more effectively in the analysis of survival data since it includes as special models several widely-known regression models. Further, for different parameter settings, sample sizes and censoring percentages, various simulations are performed. Overall, the new regression model is very useful to the analysis of real data.  相似文献   

4.
A four-parameter extension of the generalized gamma distribution capable of modelling a bathtub-shaped hazard rate function is defined and studied. The beauty and importance of this distribution lies in its ability to model monotone and non-monotone failure rate functions, which are quite common in lifetime data analysis and reliability. The new distribution has a number of well-known lifetime special sub-models, such as the exponentiated Weibull, exponentiated generalized half-normal, exponentiated gamma and generalized Rayleigh, among others. We derive two infinite sum representations for its moments. We calculate the density of the order statistics and two expansions for their moments. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is obtained. Finally, a real data set from the medical area is analysed.  相似文献   

5.
ABSTRACT

The log-logistic distribution is commonly used to model lifetime data. We propose a wider distribution, named the exponentiated log-logistic geometric distribution, based on a double activation approach. We obtain the quantile function, ordinary moments, and generating function. The method of maximum likelihood is used to estimate the model parameters. We propose a new extended regression model based on the logarithm of the exponentiated log-logistic geometric distribution. This regression model can be very useful in the analysis of real data and could provide better fits than other special regression models. The potentiality of the new models is illustrated by means of two applications to real lifetime data sets.  相似文献   

6.
For the first time, we propose a five-parameter lifetime model called the McDonald Weibull distribution to extend the Weibull, exponentiated Weibull, beta Weibull and Kumaraswamy Weibull distributions, among several other models. We obtain explicit expressions for the ordinary moments, quantile and generating functions, mean deviations and moments of the order statistics. We use the method of maximum likelihood to fit the new distribution and determine the observed information matrix. We define the log-McDonald Weibull regression model for censored data. The potentiality of the new model is illustrated by means of two real data sets.  相似文献   

7.
A five-parameter extension of the Weibull distribution capable of modelling a bathtub-shaped hazard rate function is introduced and studied. The beauty and importance of the new distribution lies in its ability to model both monotone and non-monotone failure rates that are quite common in lifetime problems and reliability. The proposed distribution has a number of well-known lifetime distributions as special sub-models, such as the Weibull, extreme value, exponentiated Weibull, generalized Rayleigh and modified Weibull (MW) distributions, among others. We obtain quantile and generating functions, mean deviations, Bonferroni and Lorenz curves and reliability. We provide explicit expressions for the density function of the order statistics and their moments. For the first time, we define the log-Kumaraswamy MW regression model to analyse censored data. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is determined. Two applications illustrate the potentiality of the proposed distribution.  相似文献   

8.
In this paper, we introduce a new distribution generated by gamma random variables. We show that this distribution includes as a special case the distribution of the lower record value from a sequence of i.i.d. random variables from a population with the exponentiated (generalized) exponential distribution. The properties of this distribution are derived and the estimation of the model parameters is discussed. Some applications to real data sets are finally presented for illustration.  相似文献   

9.
We study the properties of the called log-beta Weibull distribution defined by the logarithm of the beta Weibull random variable (Famoye et al. in J Stat Theory Appl 4:121–136, 2005; Lee et al. in J Mod Appl Stat Methods 6:173–186, 2007). An advantage of the new distribution is that it includes as special sub-models classical distributions reported in the lifetime literature. We obtain formal expressions for the moments, moment generating function, quantile function and mean deviations. We construct a regression model based on the new distribution to predict recurrence of prostate cancer for patients with clinically localized prostate cancer treated by open radical prostatectomy. It can be applied to censored data since it represents a parametric family of models that includes as special sub-models several widely-known regression models. The regression model was fitted to a data set of 1,324 eligible prostate cancer patients. We can predict recurrence free probability after the radical prostatectomy in terms of highly significant clinical and pathological explanatory variables associated with the recurrence of the disease. The predicted probabilities of remaining free of cancer progression are calculated under two nested models.  相似文献   

10.
We propose a new class of continuous distributions with two extra shape parameters named the generalized odd log-logistic family of distributions. The proposed family contains as special cases the proportional reversed hazard rate and odd log-logistic classes. Its density function can be expressed as a linear combination of exponentiated densities based on the same baseline distribution. Some of its mathematical properties including ordinary moments, quantile and generating functions, two entropy measures and order statistics are obtained. We derive a power series for the quantile function. We discuss the method of maximum likelihood to estimate the model parameters. We study the behaviour of the estimators by means of Monte Carlo simulations. We introduce the log-odd log-logistic Weibull regression model with censored data based on the odd log-logistic-Weibull distribution. The importance of the new family is illustrated using three real data sets. These applications indicate that this family can provide better fits than other well-known classes of distributions. The beauty and importance of the proposed family lies in its ability to model different types of real data.  相似文献   

11.
Mudholkar and Srivastava [1993. Exponentiated Weibull family for analyzing bathtub failure data. IEEE Trans. Reliability 42, 299–302] introduced three-parameter exponentiated Weibull distribution. Two-parameter exponentiated exponential or generalized exponential distribution is a particular member of the exponentiated Weibull distribution. Generalized exponential distribution has a right skewed unimodal density function and monotone hazard function similar to the density functions and hazard functions of the gamma and Weibull distributions. It is observed that it can be used quite effectively to analyze lifetime data in place of gamma, Weibull and log-normal distributions. The genesis of this model, several properties, different estimation procedures and their properties, estimation of the stress-strength parameter, closeness of this distribution to some of the well-known distribution functions are discussed in this article.  相似文献   

12.
We propose a new class of distributions called the exponentiated G geometric family motivated mainly by lifetime issues which can generate several lifetime models discussed in the literature. Some mathematical properties of the new family including asymptotes and shapes, moments, quantile and generating functions, extreme values and order statistics are fully investigated. We propose the log-exponentiated Weibull geometric and log-exponentiated log-logistic geometric regression models to cope with censored data. The model parameters are estimated by maximum likelihood. Three examples with real data expose quite well the new family.  相似文献   

13.
This article introduces a new generalization of the transmuted Weibull distribution introduced by Aryal and Tsokos in 2011. We refer to the new distribution as exponentiated transmuted Weibull geometric (ETWG) distribution. The new model contains 22 lifetime distributions as special cases such as the exponentiated Weibull geometric, complementary Weibull geometric, exponentiated transmuted Weibull, exponentiated Weibull, and Weibull distributions, among others. The properties of the new model are discussed and the maximum likelihood estimation is used to evaluate the parameters. Explicit expressions are derived for the moments and examine the order statistics. To examine the performance of our new model in fitting several data we use two real sets of data, censored and uncensored, and then compare the fitting of the new model with some nested and nonnested models, which provides the best fit to all of the data. A simulation has been performed to assess the behavior of the maximum likelihood estimates of the parameters under the finite samples. This model is capable of modeling various shapes of aging and failure criteria.  相似文献   

14.
In this article, we investigate the potential usefulness of the three-parameter transmuted generalized exponential distribution for analyzing lifetime data. We compare it with various generalizations of the two-parameter exponential distribution using maximum likelihood estimation. Some mathematical properties of the new extended model including expressions for the quantile and moments are investigated. We propose a location-scale regression model, based on the log-transmuted generalized exponential distribution. Two applications with real data are given to illustrate the proposed family of lifetime distributions.  相似文献   

15.
Generalizing lifetime distributions is always precious for applied statisticians. In this paper, we introduce a new four-parameter generalization of the exponentiated power Lindley (EPL) distribution, called the exponentiated power Lindley geometric (EPLG) distribution, obtained by compounding EPL and geometric distributions. The new distribution arises in a latent complementary risks scenario, in which the lifetime associated with a particular risk is not observable; rather, we observe only the maximum lifetime value among all risks. The distribution exhibits decreasing, increasing, unimodal and bathtub-shaped hazard rate functions, depending on its parameters. It contains several lifetime distributions as particular cases: EPL, new generalized Lindley, generalized Lindley, power Lindley and Lindley geometric distributions. We derive several properties of the new distribution such as closed-form expressions for the density, cumulative distribution function, survival function, hazard rate function, the rth raw moment, and also the moments of order statistics. Moreover, we discuss maximum likelihood estimation and provide formulas for the elements of the Fisher information matrix. Simulation studies are also provided. Finally, two real data applications are given for showing the flexibility and potentiality of the new distribution.  相似文献   

16.
In survival analysis applications, the presence of failure rate functions with non monotone shapes is common. Therefore, models that can accommodate such different shapes are needed. In this article, we present a location regression model based on the complementary exponentiated exponential geometric distribution as an alternative to the usual bathtub, increasing, and decreasing failure rates in lifetime data. Assuming censored data, we consider the maximum likelihood inference for analysis, graphical verification for residuals, and test statistics for influential points.  相似文献   

17.
In this paper we introduce a flexible extension of the Gumbel distribution called the odd log-logistic exponentiated Gumbel distribution. The new model was implemented in GAMLSS package of R software and a brief tutorial on how to use this package is presented throughout the paper. We provide a comprehensive treatment of its general mathematical properties. Further, we propose a new extended regression model considering four regression structures. We discuss estimation methods based on censored and uncensored data. Two simulation studies are presented and four real data sets are applied to illustrating the usefulness of the new model.  相似文献   

18.
In this paper, a new five-parameter lifetime distribution called beta generalized linear exponential distribution (BGLED) is introduced. It includes at least 17 popular sub-models as special cases such as the beta linear exponential, the beta generalized exponential, and the exponentiated generalized linear distributions. Mathematical and statistical properties of the proposed distribution are discussed in details. In particular, explicit expression for the density function, moments, asymptotics distributions for sample extreme statistics, and other statistical measures are obtained. The estimation of the parameters by the method of maximum-likelihood is discussed and the finite sample properties of the maximum-likelihood estimators (MLEs) are investigated numerically. A real data set is used to demonstrate its superior performance fit over several existing popular lifetime models.  相似文献   

19.
Generalized exponential distributions   总被引:8,自引:0,他引:8  
The three-parameter gamma and three-parameter Weibull distributions are commonly used for analysing any lifetime data or skewed data. Both distributions have several desirable properties, and nice physical interpretations. Because of the scale and shape parameters, both have quite a bit of flexibility for analysing different types of lifetime data. They have increasing as well as decreasing hazard rate depending on the shape parameter. Unfortunately both distributions also have certain drawbacks. This paper considers a three-parameter distribution which is a particular case of the exponentiated Weibull distribution originally proposed by Mudholkar, Srivastava & Freimer (1995) when the location parameter is not present. The study examines different properties of this model and observes that this family has some interesting features which are quite similar to those of the gamma family and the Weibull family, and certain distinct properties also. It appears this model can be used as an alternative to the gamma model or the Weibull model in many situations. One dataset is provided where the three-parameter generalized exponential distribution fits better than the three-parameter Weibull distribution or the three-parameter gamma distribution.  相似文献   

20.
In this paper, we consider shared gamma frailty model with the reversed hazard rate (RHR) with two different baseline distributions, namely the generalized inverse Rayleigh and the exponentiated Gumbel distributions. With these two baseline distributions we propose two different shared frailty models. We develop the Bayesian estimation procedure using Markov Chain Monte Carlo technique to estimate the parameters involved in these models. We present a simulation study to compare the true values of the parameters with the estimated values. A search of the literature suggests that currently no work has been done for these two baseline distributions with a shared gamma frailty with the RHR so far. We also apply these two models by using a real life bivariate survival data set of Australian twin data given by Duffy et a1. (1990) and a better model is suggested for the data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号