首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this article, having observed the generalized order statistics in a sample, we construct a test for the hypothesis that the underlying distribution is the Pareto I distribution. The Shannon entropy of generalized order statistics is used to test the null hypothesis.  相似文献   

3.
Generalized Pareto distribution (GPD) has been widely used to model exceedances over thresholds. In this article we propose a new method called weighted nonlinear least squares (WNLS) to estimate the parameters of the GPD. The WNLS estimators always exist and are simple to compute. Some asymptotic results of the proposed method are provided. The simulation results indicate that the proposed method performs well compared to existing methods in terms of mean squared error and bias. Its advantages are further illustrated through the analysis of two real data sets.  相似文献   

4.
The Bayes estimators of the Gini index, the mean income and the proportion of the population living below a prescribed income level are obtained in this paper on the basis of censored income data from a pareto income distribution. The said estimators are obtained under the assumptions of a two-parameter exponential prior distribution and the usual squared error loss function. This work is also extended to the case when the income data are grouped and the exact incomes for the individuals in the population are not available. The method for the assessment of the hyperparameters is also outlined. Finally, the results are generalized for the doubly truncated gamma prior distribution. Now deceased.  相似文献   

5.
Extreme quantile estimation plays an important role in risk management and environmental statistics among other applications. A popular method is the peaks-over-threshold (POT) model that approximate the distribution of excesses over a high threshold through generalized Pareto distribution (GPD). Motivated by a practical financial risk management problem, we look for an appropriate prior choice for Bayesian estimation of the GPD parameters that results in better quantile estimation. Specifically, we propose a noninformative matching prior for the parameters of a GPD so that a specific quantile of the Bayesian predictive distribution matches the true quantile in the sense of Datta et al. (2000).  相似文献   

6.
Jin Zhang 《Statistics》2013,47(4):792-799
The Pareto distribution is an important distribution in statistics, which has been widely used in finance, physics, hydrology, geology, astronomy, and so on. Even though the parameter estimation for the Pareto distribution has been well established in the literature, the estimation problem for the truncated Pareto distribution becomes complex. This article investigates the bias and mean-squared error of the maximum-likelihood estimation for the truncated Pareto distribution, and some useful results are obtained.  相似文献   

7.
The generalized Pareto distribution (GPD) has been widely used in the extreme value framework. The success of the GPD when applied to real data sets depends substantially on the parameter estimation process. Several methods exist in the literature for estimating the GPD parameters. Mostly, the estimation is performed by maximum likelihood (ML). Alternatively, the probability weighted moments (PWM) and the method of moments (MOM) are often used, especially when the sample sizes are small. Although these three approaches are the most common and quite useful in many situations, their extensive use is also due to the lack of knowledge about other estimation methods. Actually, many other methods, besides the ones mentioned above, exist in the extreme value and hydrological literatures and as such are not widely known to practitioners in other areas. This paper is the first one of two papers that aim to fill in this gap. We shall extensively review some of the methods used for estimating the GPD parameters, focusing on those that can be applied in practical situations in a quite simple and straightforward manner.  相似文献   

8.
For the complete sample and the right Type II censored sample, Chen [Joint confidence region for the parameters of Pareto distribution. Metrika 44 (1996), pp. 191–197] proposed the interval estimation of the parameter θ and the joint confidence region of the two parameters of Pareto distribution. This paper proposed two methods to construct the confidence region of the two parameters of the Pareto distribution for the progressive Type II censored sample. A simulation study comparing the performance of the two methods is done and concludes that Method 1 is superior to Method 2 by obtaining a smaller confidence area. The interval estimation of parameter ν is also given under progressive Type II censoring. In addition, the predictive intervals of the future observation and the ratio of the two future consecutive failure times based on the progressive Type II censored sample are also proposed. Finally, one example is given to illustrate all interval estimations in this paper.  相似文献   

9.
Parameter estimation of the generalized Pareto distribution—Part II   总被引:1,自引:0,他引:1  
This is the second part of a paper which focuses on reviewing methods for estimating the parameters of the generalized Pareto distribution (GPD). The GPD is a very important distribution in the extreme value context. It is commonly used for modeling the observations that exceed very high thresholds. The ultimate success of the GPD in applications evidently depends on the parameter estimation process. Quite a few methods exist in the literature for estimating the GPD parameters. Estimation procedures, such as the maximum likelihood (ML), the method of moments (MOM) and the probability weighted moments (PWM) method were described in Part I of the paper. We shall continue to review methods for estimating the GPD parameters, in particular methods that are robust and procedures that use the Bayesian methodology. As in Part I, we shall focus on those that are relatively simple and straightforward to be applied to real world data.  相似文献   

10.
A class of goodness-of-fit estimators is found to provide a useful alternative in certain situations to the standard maximum likelihood method which has some undesirable estimation characteristics for estimation from the three-parameter lognormal distribution. The class of goodness-of-fit tests considered include the Shapiro-Wilk and Filliben tests which reduce to a weighted linear combination of the order statistics that can be maximized in estimation problems. The weighted order statistic estimators are compared to the standard procedures in Monte Carlo simulations. Robustness of the procedures are examined and example data sets analyzed.  相似文献   

11.
The generalized Pareto distribution (GPD) has been widely used to model exceedances over a threshold. This article generalizes the method of generalized probability weighted moments, and applies this method to estimate the parameters of GPD. The estimator is computationally easy. Some asymptotic results of this method are provided. Two simulations are carried out to investigate the behavior of this method and to compare them with other methods suggested in the literature. The simulation results show that the performance of the proposed method is better than some other methods. Finally, this method is applied to analyze a real-life data.  相似文献   

12.
A large-sample method of estimation for the parameters of Pareto laws is investigatedo The estimates are derived by using a small subset of k sample quantiles out of the original observations. The optimum spacing of the k quantiles is also examined. A Monte Carlo study compares this method with the method of moments and that of maximum likelihood for a selected set of parameter values and sample sizes.  相似文献   

13.
The most popular approach in extreme value statistics is the modelling of threshold exceedances using the asymptotically motivated generalised Pareto distribution. This approach involves the selection of a high threshold above which the model fits the data well. Sometimes, few observations of a measurement process might be recorded in applications and so selecting a high quantile of the sample as the threshold leads to almost no exceedances. In this paper we propose extensions of the generalised Pareto distribution that incorporate an additional shape parameter while keeping the tail behaviour unaffected. The inclusion of this parameter offers additional structure for the main body of the distribution, improves the stability of the modified scale, tail index and return level estimates to threshold choice and allows a lower threshold to be selected. We illustrate the benefits of the proposed models with a simulation study and two case studies.  相似文献   

14.
This paper compares minimum distance estimation with best linear unbiased estimation to determine which technique provides the most accurate estimates for location and scale parameters as applied to the three parameter Pareto distribution. Two minimum distance estimators are developed for each of the three distance measures used (Kolmogorov, Cramer‐von Mises, and Anderson‐Darling) resulting in six new estimators. For a given sample size 6 or 18 and shape parameter 1(1)4, the location and scale parameters are estimated. A Monte Carlo technique is used to generate the sample sets. The best linear unbiased estimator and the six minimum distance estimators provide parameter estimates based on each sample set. These estimates are compared using mean square error as the evaluation tool. Results show that the best linear unbaised estimator provided more accurate estimates of location and scale than did the minimum estimators tested.  相似文献   

15.
In this paper, we study the E-Bayesian and hierarchical Bayesian estimations of the parameter derived from Pareto distribution under different loss functions. The definition of the E-Bayesian estimation of the parameter is provided. Moreover, for Pareto distribution, under the condition of the scale parameter is known, based on the different loss functions, formulas of the E-Bayesian estimation and hierarchical Bayesian estimations for the shape parameter are given, respectively, properties of the E-Bayesian estimation – (i) the relationship between of E-Bayesian estimations under different loss functions are provided, (ii) the relationship between of E-Bayesian and hierarchical Bayesian estimations under the same loss function are also provided, and using the Monte Carlo method simulation example is given. Finally, combined with the golfers income data practical problem are calculated, the results show that the proposed method is feasible and convenient for application.  相似文献   

16.
In this paper we present a new characterization of the Pareto distribution and consider goodness-of-fit tests based on it. We provide an integral and Kolmogorov–Smirnov-type statistics based on U-statistics and we calculate Bahadur efficiency for various alternatives. We find locally optimal alternatives for those tests. For small sample sizes, we compare the power of those tests with some common goodness-of-fit tests.  相似文献   

17.
A. Wong 《Statistical Papers》1998,39(2):189-201
The use of the Pareto distribution as a model for various socio-economic phenomena dates back to the late nineteenth century. Recently, it has also been recognized as a useful model for the analysis of lifetime data. In this paper, we apply the approximate studentization method to obtain inference for the scale parameter of the Pareto distribution, and also for the strong Pareto law. Moreover, we extend the method to construct prediction limits for thejth smallest future observation based on the firstk observed data.  相似文献   

18.
B.B. Winter 《Statistics》2013,47(3):339-355
Two different approaches to the design of optimal observations networks are compared. One approach is based on the traditional experimental design theory, the other essentially uses the covariance analysis methodology of observed fields, It is found that for random fields generated by regression models with random parameters both approaches lead to similar solutions  相似文献   

19.
This paper discusses maximum likelihood parameter estimation in the Pareto distribution for multicensored samples. In particu-

lar, the modality of the associated conditional log-likelihood function is investigated in order to resolve questions concerninc

the existence and uniqurneas of the lnarimum likelihood estimates.For the cases with one parameter known, the maximum likelihood

estimates of the remaining unknown parameters are shown to exist and to be unique. When both parameters are unknown, the maximum likelihood estimates may or may not exist and be unique. That is, their existence and uniqueness would seem to depend solely upon the information inherent in the sample data. In viav of the possible nonexistence and/or non-uniqueness of the maximum likelihood estimates when both parameters are unknown, alternatives to standard iterative numerical methods are explored.  相似文献   

20.
In this article, we estimate the parameters of exponential Pareto II distribution by two new methods. The first one is based on the principle of maximum entropy (POME) and the second is by Kullback–Leibler divergence of survival function (KLS). Monte Carlo simulated data are used to evaluate these methods and compare them with the maximum likelihood method. Finally, we fit this distribution to a set of real data by estimation procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号