首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In many practical situations, complete data are not available in lifetime studies. Many of the available observations are right censored giving survival information up to a noted time and not the exact failure times. This constitutes randomly censored data. In this paper, we consider Maxwell distribution as a survival time model. The censoring time is also assumed to follow a Maxwell distribution with a different parameter. Maximum likelihood estimators and confidence intervals for the parameters are derived with randomly censored data. Bayes estimators are also developed with inverted gamma priors and generalized entropy loss function. A Monte Carlo simulation study is performed to compare the developed estimation procedures. A real data example is given at the end of the study.  相似文献   

2.
A generalized version of inverted exponential distribution (IED) is introduced in this paper. This lifetime distribution is capable of modelling various shapes of failure rates, and hence various shapes of ageing criteria. The model can be considered as another useful two-parameter generalization of the IED. Statistical and reliability properties of the generalized inverted exponential distribution are derived. Maximum likelihood estimation and least square estimation are used to evaluate the parameters and the reliability of the distribution. Properties of the estimates are also studied.  相似文献   

3.
The Type-II progressive censoring scheme has become very popular for analyzing lifetime data in reliability and survival analysis. However, no published papers address parameter estimation under progressive Type-II censoring for the mixed exponential distribution (MED), which is an important model for reliability and survival analysis. This is the problem that we address in this paper. It is noted that maximum likelihood estimation of unknown parameters cannot be obtained in closed form due to the complicated log-likelihood function. We solve this problem by using the EM algorithm. Finally, we obtain closed form estimates of the model. The proposed methods are illustrated by both some simulations and a case analysis.  相似文献   

4.
Testing the reliability at a nominal stress level may lead to extensive test time. Estimations of reliability parameters can be obtained faster thanks to step-stress accelerated life tests (ALT). Usually, a transfer functional defined among a given class of parametric functions is required, but Bagdonavi?ius and Nikulin showed that ALT tests are still possible without any assumption about this functional. When shape and scale parameters of the lifetime distribution change with the stress level, they suggested an ALT method using a model called CHanging Shape and Scale (CHSS). They estimated the lifetime parameters at the nominal stress with maximum likelihood estimation (MLE). However, this method usually requires an initialization of lifetime parameters, which may be difficult when no similar product has been tested before. This paper aims to face this issue by using an iterating least square estimation (LSE) method. It will enable one to initialize the optimization required to carry out the MLE and it will give estimations that can sometimes be better than those given by MLE.  相似文献   

5.
The Maxwell (or Maxwell–Boltzmann) distribution was invented to solve the problems relating to physics and chemistry. It has also proved its strength of analysing the lifetime data. For this distribution, we consider point and interval estimation procedures in the presence of type-I progressively hybrid censored data. We obtain maximum likelihood estimator of the parameter and provide asymptotic and bootstrap confidence intervals of it. The Bayes estimates and Bayesian credible and highest posterior density intervals are obtained using inverted gamma prior. The expression of the expected number of failures in life testing experiment is also derived. The results are illustrated through the simulation study and analysis of a real data set is presented.  相似文献   

6.
ABSTRACT

In this paper two probability distributions are analyzed which are formed by compounding inverse Weibull with zero-truncated Poisson and geometric distributions. The distributions can be used to model lifetime of series system where the lifetimes follow inverse Weibull distribution and the subgroup size being random follows either geometric or zero-truncated Poisson distribution. Some of the important statistical and reliability properties of each of the distributions are derived. The distributions are found to exhibit both monotone and non-monotone failure rates. The parameters of the distributions are estimated using the expectation-maximization algorithm and the method of minimum distance estimation. The potentials of the distributions are explored through three real life data sets and are compared with similar compounded distributions, viz. Weibull-geometric, Weibull-Poisson, exponential-geometric and exponential-Poisson distributions.  相似文献   

7.
In this paper, a generalization of inverted exponential distribution is considered as a lifetime model [A.M. Abouammoh and A.M. Alshingiti, Reliability estimation of generalized inverted exponential distribution, J. Statist. Comput. Simul. 79(11) (2009), pp. 1301–1315]. Its reliability characteristics and important distributional properties are discussed. Maximum likelihood estimation of the two parameters involved along with reliability and failure rate functions are derived. The method of least square estimation of parameters is also studied here. In view of cost and time constraints, type II progressively right censored sampling scheme has been used. For illustration of the performance of the estimates, a Monte Carlo simulation study is carried out. Finally, a real data example is given to show the practical applications of the paper.  相似文献   

8.
The censored δ-shock model is a special kind of shock model and it has very important research values in the reliability theory. In this paper, we discuss the parameter estimation of the censored δ-shock model when the inter-arrival times between two successive shocks follows uniform distribution on [a, b]. With the maximum likelihood estimation, we obtain the parameter estimator and expectation of estimator and lifetime of the model. By numerical simulation, we get the empirical result on the estimator of δ and the relationship between δ and other parameters.  相似文献   

9.
In this article, we introduce a new reliability model of inverse gamma distribution referred to as the generalized inverse gamma distribution (GIG). A generalization of inverse gamma distribution is defined based on the exact form of generalized gamma function of Kobayashi (1991). This function is useful in many problems of diffraction theory and corrosion problems in new machines. The new distribution has a number of lifetime special sub-models. For this model, some of its statistical properties are studied. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is derived. We also demonstrate the usefulness of this distribution on a real data set.  相似文献   

10.
In this article, we shall attempt to introduce a new class of lifetime distributions, which enfolds several known distributions such as the generalized linear failure rate distribution and covers both positive as well as negative skewed data. This new four-parameter distribution allows for flexible hazard rate behavior. Indeed, the hazard rate function here can be increasing, decreasing, bathtub-shaped, or upside-down bathtub-shaped. We shall first study some basic distributional properties of the new model such as the cumulative distribution function, the density of the order statistics, their moments, and Rényi entropy. Estimation of the stress-strength parameter as an important reliability property is also studied. The maximum likelihood estimation procedure for complete and censored data and Bayesian method are used for estimating the parameters involved. Finally, application of the new model to three real datasets is illustrated to show the flexibility and potential of the new model compared to rival models.  相似文献   

11.
A compound class of zero truncated Poisson and lifetime distributions is introduced. A specialization is paved to a new three-parameter distribution, called doubly Poisson-exponential distribution, which may represent the lifetime of units connected in a series-parallel system. The new distribution can be obtained by compounding two zero truncated Poisson distributions with an exponential distribution. Among its motivations is that its hazard rate function can take different shapes such as decreasing, increasing and upside-down bathtub depending on the values of its parameters. Several properties of the new distribution are discussed. Based on progressive type-II censoring, six estimation methods [maximum likelihood, moments, least squares, weighted least squares and Bayes (under linear-exponential and general entropy loss functions) estimations] are used to estimate the involved parameters. The performance of these methods is investigated through a simulation study. The Bayes estimates are obtained using Markov chain Monte Carlo algorithm. In addition, confidence intervals, symmetric credible intervals and highest posterior density credible intervals of the parameters are obtained. Finally, an application to a real data set is used to compare the new distribution with other five distributions.  相似文献   

12.
In this article, a new three-parameter extension of the two-parameter log-logistic distribution is introduced. Several distributional properties such as moment-generating function, quantile function, mean residual lifetime, the Renyi and Shanon entropies, and order statistics are considered. The estimation of the model parameters for complete and right-censored cases is investigated competently by maximum likelihood estimation (MLE). A simulation study is conducted to show that these MLEs are consistent in moderate samples. Two real datasets are considered; one is a right-censored data to show that the proposed model has a superior performance over several existing popular models.  相似文献   

13.
In this paper we introduce a new three-parameter exponential-type distribution. The new distribution is quite flexible and can be used effectively in modeling survival data and reliability problems. It can have constant, decreasing, increasing, upside-down bathtub and bathtub-shaped hazard rate functions. It also generalizes some well-known distributions. We discuss maximum likelihood estimation of the model parameters for complete sample and for censored sample. Additionally, we formulate a new cure rate survival model by assuming that the number of competing causes of the event of interest has the Poisson distribution and the time to this event follows the proposed distribution. Maximum likelihood estimation of the model parameters of the new cure rate survival model is discussed for complete sample and censored sample. Two applications to real data are provided to illustrate the flexibility of the new model in practice.  相似文献   

14.
ABSTRACT

The binomial exponential 2 (BE2) distribution was proposed by Bakouch et al. as a distribution of a random sum of independent exponential random variables, when the sample size has a zero truncated binomial distribution. In this article, we introduce a generalization of BE2 distribution which offers a more flexible model for lifetime data than the BE2 distribution. The hazard rate function of the proposed distribution can be decreasing, increasing, decreasing–increasing–decreasing and unimodal, so it turns out to be quite flexible for analyzing non-negative real life data. Some statistical properties and parameters estimation of the distribution are investigated. Three different algorithms are proposed for generating random data from the new distribution. Two real data applications regarding the strength data and Proschan's air-conditioner data are used to show that the new distribution is better than the BE2 distribution and some other well-known distributions in modeling lifetime data.  相似文献   

15.
The non-homogeneous Poisson process (NHPP) model is a very important class of software reliability models and is widely used in software reliability engineering. NHPPs are characterized by their intensity functions. In the literature it is usually assumed that the functional forms of the intensity functions are known and only some parameters in intensity functions are unknown. The parametric statistical methods can then be applied to estimate or to test the unknown reliability models. However, in realistic situations it is often the case that the functional form of the failure intensity is not very well known or is completely unknown. In this case we have to use functional (non-parametric) estimation methods. The non-parametric techniques do not require any preliminary assumption on the software models and then can reduce the parameter modeling bias. The existing non-parametric methods in the statistical methods are usually not applicable to software reliability data. In this paper we construct some non-parametric methods to estimate the failure intensity function of the NHPP model, taking the particularities of the software failure data into consideration.  相似文献   

16.
In this article, we propose an extension of the Maxwell distribution, so-called the extended Maxwell distribution. This extension is evolved by using the Maxwell-X family of distributions and Weibull distribution. We study its fundamental properties such as hazard rate, moments, generating functions, skewness, kurtosis, stochastic ordering, conditional moments and moment generating function, hazard rate, mean and variance of the (reversed) residual life, reliability curves, entropy, etc. In estimation viewpoint, the maximum likelihood estimation of the unknown parameters of the distribution and asymptotic confidence intervals are discussed. We also obtain expected Fisher’s information matrix as well as discuss the existence and uniqueness of the maximum likelihood estimators. The EMa distribution and other competing distributions are fitted to two real datasets and it is shown that the distribution is a good competitor to the compared distributions.  相似文献   

17.
In this paper, maximum likelihood and Bayes estimators of the parameters, reliability and hazard functions have been obtained for two-parameter bathtub-shaped lifetime distribution when sample is available from progressive Type-II censoring scheme. The Markov chain Monte Carlo (MCMC) method is used to compute the Bayes estimates of the model parameters. It has been assumed that the parameters have gamma priors and they are independently distributed. Gibbs within the Metropolis–Hasting algorithm has been applied to generate MCMC samples from the posterior density function. Based on the generated samples, the Bayes estimates and highest posterior density credible intervals of the unknown parameters as well as reliability and hazard functions have been computed. The results of Bayes estimators are obtained under both the balanced-squared error loss and balanced linear-exponential (BLINEX) loss. Moreover, based on the asymptotic normality of the maximum likelihood estimators the approximate confidence intervals (CIs) are obtained. In order to construct the asymptotic CI of the reliability and hazard functions, we need to find the variance of them, which are approximated by delta and Bootstrap methods. Two real data sets have been analyzed to demonstrate how the proposed methods can be used in practice.  相似文献   

18.
We will discuss the reliability analysis of the constant stress accelerated life test on a series system connected with multiple components under independent Weibull lifetime distributions whose scale parameters are log-linear in the level of the stress variable. The system lifetimes are collected under Type I censoring but the components that cause the systems to fail may or may not be observed. The data are so called masked for the latter case. Maximum likelihood approach and the Bayesian method are considered when the data are masked. Statistical inference on the estimation of the underlying model parameters as well as the mean time to failure and the reliability function will be addressed. Simulation study for a three-component case shows that Bayesian analysis outperforms the maximum likelihood approach especially when the data are highly masked.  相似文献   

19.
In this paper, a new five-parameter lifetime distribution called beta generalized linear exponential distribution (BGLED) is introduced. It includes at least 17 popular sub-models as special cases such as the beta linear exponential, the beta generalized exponential, and the exponentiated generalized linear distributions. Mathematical and statistical properties of the proposed distribution are discussed in details. In particular, explicit expression for the density function, moments, asymptotics distributions for sample extreme statistics, and other statistical measures are obtained. The estimation of the parameters by the method of maximum-likelihood is discussed and the finite sample properties of the maximum-likelihood estimators (MLEs) are investigated numerically. A real data set is used to demonstrate its superior performance fit over several existing popular lifetime models.  相似文献   

20.
Exponential distribution has an extensive application in reliability. Introducing shape parameter to this distribution have produced various distribution functions. In their study in 2009, Gupta and Kundu brought another distribution function using Azzalini's method, which is applicable in reliability and named as weighted exponential (WE) distribution. The parameters of this distribution function have been recently estimated by the above two authors in classical statistics. In this paper, Bayesian estimates of the parameters are derived. To achieve this purpose we use Lindley's approximation method for the integrals that cannot be solved in closed form. Furthermore, a Gibbs sampling procedure is used to draw Markov chain Monte Carlo samples from the posterior distribution indirectly and then the Bayes estimates of parameters are derived. The estimation of reliability and hazard functions are also discussed. At the end of the paper, some comparisons between classical and Bayesian estimation methods are studied by using Monte Carlo simulation study. The simulation study incorporates complete and Type-II censored samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号