首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this article, we deal with a two-parameter exponentiated half-logistic distribution. We consider the estimation of unknown parameters, the associated reliability function and the hazard rate function under progressive Type II censoring. Maximum likelihood estimates (M LEs) are proposed for unknown quantities. Bayes estimates are derived with respect to squared error, linex and entropy loss functions. Approximate explicit expressions for all Bayes estimates are obtained using the Lindley method. We also use importance sampling scheme to compute the Bayes estimates. Markov Chain Monte Carlo samples are further used to produce credible intervals for the unknown parameters. Asymptotic confidence intervals are constructed using the normality property of the MLEs. For comparison purposes, bootstrap-p and bootstrap-t confidence intervals are also constructed. A comprehensive numerical study is performed to compare the proposed estimates. Finally, a real-life data set is analysed to illustrate the proposed methods of estimation.  相似文献   

2.
From the exact distribution of the maximum likelihood estimator of the average lifetime based on progressive hybrid exponential censored sample, we derive an explicit expression for the Bayes risk of a sampling plan when a quadratic loss function is used. The simulated annealing algorithm is then used to determine the optimal sampling plan. Some optimal Bayes solutions under progressive hybrid and ordinary hybrid censoring schemes are presented to illustrate the effectiveness of the proposed method.  相似文献   

3.
In this paper, the estimation of parameters, reliability and hazard functions of a inverted exponentiated half logistic distribution (IEHLD) from progressive Type II censored data has been considered. The Bayes estimates for progressive Type II censored IEHLD under asymmetric and symmetric loss functions such as squared error, general entropy and linex loss function are provided. The Bayes estimates for progressive Type II censored IEHLD parameters, reliability and hazard functions are also obtained under the balanced loss functions. However, the Bayes estimates cannot be obtained explicitly, Lindley approximation method and importance sampling procedure are considered to obtain the Bayes estimates. Furthermore, the asymptotic normality of the maximum likelihood estimates is used to obtain the approximate confidence intervals. The highest posterior density credible intervals of the parameters based on importance sampling procedure are computed. Simulations are performed to see the performance of the proposed estimates. For illustrative purposes, two data sets have been analyzed.  相似文献   

4.
In this paper, we consider estimation of unknown parameters of an inverted exponentiated Rayleigh distribution under type II progressive censored samples. Estimation of reliability and hazard functions is also considered. Maximum likelihood estimators are obtained using the Expectation–Maximization (EM) algorithm. Further, we obtain expected Fisher information matrix using the missing value principle. Bayes estimators are derived under squared error and linex loss functions. We have used Lindley, and Tiernery and Kadane methods to compute these estimates. In addition, Bayes estimators are computed using importance sampling scheme as well. Samples generated from this scheme are further utilized for constructing highest posterior density intervals for unknown parameters. For comparison purposes asymptotic intervals are also obtained. A numerical comparison is made between proposed estimators using simulations and observations are given. A real-life data set is analyzed for illustrative purposes.  相似文献   

5.
This article deals with progressive first-failure censoring, which is a generalization of progressive censoring. We derive maximum likelihood estimators of the unknown parameters and reliability characteristics of generalized inverted exponential distribution using progressive first-failure censored samples. The asymptotic confidence intervals and coverage probabilities for the parameters are obtained based on the observed Fisher's information matrix. Bayes estimators of the parameters and reliability characteristics under squared error loss function are obtained using the Lindley approximation and importance sampling methods. Also, highest posterior density credible intervals for the parameters are computed using importance sampling procedure. A Monte Carlo simulation study is conducted to analyse the performance of the estimators derived in the article. A real data set is discussed for illustration purposes. Finally, an optimal censoring scheme has been suggested using different optimality criteria.  相似文献   

6.
The Maxwell (or Maxwell–Boltzmann) distribution was invented to solve the problems relating to physics and chemistry. It has also proved its strength of analysing the lifetime data. For this distribution, we consider point and interval estimation procedures in the presence of type-I progressively hybrid censored data. We obtain maximum likelihood estimator of the parameter and provide asymptotic and bootstrap confidence intervals of it. The Bayes estimates and Bayesian credible and highest posterior density intervals are obtained using inverted gamma prior. The expression of the expected number of failures in life testing experiment is also derived. The results are illustrated through the simulation study and analysis of a real data set is presented.  相似文献   

7.
In this paper, the problem of estimating unknown parameters of a two-parameter Kumaraswamy-Exponential (Kw-E) distribution is considered based on progressively type-II censored sample. The maximum likelihood (ML) estimators of the parameters are obtained. Bayes estimates are also obtained using different loss functions such as squared error, LINEX and general entropy. Lindley's approximation method is used to evaluate these Bayes estimates. Monte Carlo simulation is used for numerical comparison between various estimates developed in this paper.  相似文献   

8.
In this paper we introduce a new type-II progressive censoring scheme for two samples. It is observed that the proposed censoring scheme is analytically more tractable than the existing joint progressive type-II censoring scheme proposed by Rasouli and Balakrishnan. The maximum likelihood estimators of the unknown parameters are obtained and their exact distributions are derived. Based on the exact distributions of the maximum likelihood estimators exact confidence intervals are also constructed. For comparison purposes we have used bootstrap confidence intervals also. One data analysis has been performed for illustrative purposes. Finally we propose some open problems.  相似文献   

9.
This paper considers the design of accelerated life test (ALT) sampling plans under Type I progressive interval censoring with random removals. We assume that the lifetime of products follows a Weibull distribution. Two levels of constant stress higher than the use condition are used. The sample size and the acceptability constant that satisfy given levels of producer's risk and consumer's risk are found. In particular, the optimal stress level and the allocation proportion are obtained by minimizing the generalized asymptotic variance of the maximum likelihood estimators of the model parameters. Furthermore, for validation purposes, a Monte Carlo simulation is conducted to assess the true probability of acceptance for the derived sampling plans.  相似文献   

10.
Abstract

This paper deals with Bayesian estimation and prediction for the inverse Weibull distribution with shape parameter α and scale parameter λ under general progressive censoring. We prove that the posterior conditional density functions of α and λ are both log-concave based on the assumption that λ has a gamma prior distribution and α follows a prior distribution with log-concave density. Then, we present the Gibbs sampling strategy to estimate under squared-error loss any function of the unknown parameter vector (α, λ) and find credible intervals, as well as to obtain prediction intervals for future order statistics. Monte Carlo simulations are given to compare the performance of Bayesian estimators derived via Gibbs sampling with the corresponding maximum likelihood estimators, and a real data analysis is discussed in order to illustrate the proposed procedure. Finally, we extend the developed methodology to other two-parameter distributions, including the Weibull, Burr type XII, and flexible Weibull distributions, and also to general progressive hybrid censoring.  相似文献   

11.
This article deals with the statistical inference and prediction on Burr Type XII parameters based on Type II censored sample. It is observed that the maximum likelihood estimators (MLEs) cannot be obtained in closed form. We use the expectation-maximization algorithm to compute the MLEs. We also obtain the Bayes estimators under symmetric and asymmetric loss functions such as squared error and Linex By applying Lindley's approximation and Markov chain Monte Carlo (MCMC) technique. Further, MCMC samples are used to calculate the highest posterior density credible intervals. Monte Carlo simulation study and two real-life data-sets are presented to illustrate all of the methods developed here. Furthermore, we obtain a prediction of future order statistics based on the observed ordered because of its important application in different fields such as medical and engineering sciences. A numerical example carried out to illustrate the procedures obtained for prediction of future order statistics.  相似文献   

12.
《Statistics》2012,46(6):1329-1356
ABSTRACT

Recently Mondal and Kundu [Mondal S, Kundu D. A new two sample type-II progressive censoring scheme. Commun Stat Theory Methods. 2018. doi:10.1080/03610926.2018.1472781] introduced a Type-II progressive censoring scheme for two populations. In this article, we extend the above scheme for more than two populations. The aim of this paper is to study the statistical inference under the multi-sample Type-II progressive censoring scheme, when the underlying distributions are exponential. We derive the maximum likelihood estimators (MLEs) of the unknown parameters when they exist and find out their exact distributions. The stochastic monotonicity of the MLEs has been established and this property can be used to construct exact confidence intervals of the parameters via pivoting the cumulative distribution functions of the MLEs. The distributional properties of the ordered failure times are also obtained. The Bayesian analysis of the unknown model parameters has been provided. The performances of the different methods have been examined by extensive Monte Carlo simulations. We analyse two data sets for illustrative purposes.  相似文献   

13.
In this paper, we investigate the estimation problem concerning a progressively type-II censored sample from the two-parameter bathtub-shaped lifetime distribution. We use the maximum likelihood method to obtain the point estimators of the parameters. We also provide a method for constructing an exact confidence interval and an exact joint confidence region for the parameters. Two numerical examples are presented to illustrate the method of inference developed here. Finally, Monte Carlo simulation studies are used to assess the performance of our proposed method.  相似文献   

14.
A generalized version of inverted exponential distribution (IED) is considered in this paper. This lifetime distribution is capable of modeling various shapes of failure rates, and hence various shapes of aging criteria. The model can be considered as another useful two-parameter generalization of the IED. Maximum likelihood and Bayes estimates for two parameters of the generalized inverted exponential distribution (GIED) are obtained on the basis of a progressively type-II censored sample. We also showed the existence, uniqueness and finiteness of the maximum likelihood estimates of the parameters of GIED based on progressively type-II censored data. Bayesian estimates are obtained using squared error loss function. These Bayesian estimates are evaluated by applying the Lindley's approximation method and via importance sampling technique. The importance sampling technique is used to compute the Bayes estimates and the associated credible intervals. We further consider the Bayes prediction problem based on the observed samples, and provide the appropriate predictive intervals. Monte Carlo simulations are performed to compare the performances of the proposed methods and a data set has been analyzed for illustrative purposes.  相似文献   

15.
In this paper, the statistical inference of the unknown parameters of a two-parameter inverse Weibull (IW) distribution based on the progressive type-II censored sample has been considered. The maximum likelihood estimators (MLEs) cannot be obtained in explicit forms, hence the approximate MLEs are proposed, which are in explicit forms. The Bayes and generalized Bayes estimators for the IW parameters and the reliability function based on the squared error and Linex loss functions are provided. The Bayes and generalized Bayes estimators cannot be obtained explicitly, hence Lindley's approximation is used to obtain the Bayes and generalized Bayes estimators. Furthermore, the highest posterior density credible intervals of the unknown parameters based on Gibbs sampling technique are computed, and using an optimality criterion the optimal censoring scheme has been suggested. Simulation experiments are performed to see the effectiveness of the different estimators. Finally, two data sets have been analysed for illustrative purposes.  相似文献   

16.
The bathtub-shaped failure rate function has been used for modeling the life spans of a number of electronic and mechanical products, as well as for modeling the life spans of humans, especially when some of the data are censored. This article addresses robust methods for the estimation of unknown parameters in a two-parameter distribution with a bathtub-shaped failure rate function based on progressive Type-II censored samples. Here, a class of flexible priors is considered by using the hierarchical structure of a conjugate prior distribution, and corresponding posterior distributions are obtained in a closed-form. Then, based on the square error loss function, Bayes estimators of unknown parameters are derived, which depend on hyperparameters as parameters of the conjugate prior. In order to eliminate the hyperparameters, hierarchical Bayesian estimation methods are proposed, and these proposed estimators are compared to one another based on the mean squared error, through Monte Carlo simulations for various progressively Type-II censoring schemes. Finally, a real dataset is presented for the purpose of illustration.  相似文献   

17.
Benjamin Laumen 《Statistics》2019,53(3):569-600
In this paper, we revisit the progressive Type-I censoring scheme as it has originally been introduced by Cohen [Progressively censored samples in life testing. Technometrics. 1963;5(3):327–339]. In fact, original progressive Type-I censoring proceeds as progressive Type-II censoring but with fixed censoring times instead of failure time based censoring times. Apparently, a time truncation has been added to this censoring scheme by interpreting the final censoring time as a termination time. Therefore, not much work has been done on Cohens's original progressive censoring scheme with fixed censoring times. Thus, we discuss distributional results for this scheme and establish exact distributional results in likelihood inference for exponentially distributed lifetimes. In particular, we obtain the exact distribution of the maximum likelihood estimator (MLE). Further, the stochastic monotonicity of the MLE is verified in order to construct exact confidence intervals for both the scale parameter and the reliability.  相似文献   

18.
In this paper, maximum likelihood and Bayes estimators of the parameters, reliability and hazard functions have been obtained for two-parameter bathtub-shaped lifetime distribution when sample is available from progressive Type-II censoring scheme. The Markov chain Monte Carlo (MCMC) method is used to compute the Bayes estimates of the model parameters. It has been assumed that the parameters have gamma priors and they are independently distributed. Gibbs within the Metropolis–Hasting algorithm has been applied to generate MCMC samples from the posterior density function. Based on the generated samples, the Bayes estimates and highest posterior density credible intervals of the unknown parameters as well as reliability and hazard functions have been computed. The results of Bayes estimators are obtained under both the balanced-squared error loss and balanced linear-exponential (BLINEX) loss. Moreover, based on the asymptotic normality of the maximum likelihood estimators the approximate confidence intervals (CIs) are obtained. In order to construct the asymptotic CI of the reliability and hazard functions, we need to find the variance of them, which are approximated by delta and Bootstrap methods. Two real data sets have been analyzed to demonstrate how the proposed methods can be used in practice.  相似文献   

19.
In this article, we consider the multiple step stress model based on the cumulative exposure model assumption. Here, it is assumed that for a given stress level, the lifetime of the experimental units follows exponential distribution and the expected lifetime decreases as the stress level increases. We mainly focus on the order restricted inference of the unknown parameters of the lifetime distributions. First we consider the order restricted maximum likelihood estimators (MLEs) of the model parameters. It is well known that the order restricted MLEs cannot be obtained in explicit forms. We propose an algorithm that stops in finite number of steps and it provides the MLEs. We further consider the Bayes estimates and the associated credible intervals under the squared error loss function. Due to the absence of explicit form of the Bayes estimates, we propose to use the importance sampling technique to compute Bayes estimates. We provide an extensive simulation study in case of three stress levels mainly to see the performance of the proposed methods. Finally the analysis of one real data set has been provided for illustrative purposes.  相似文献   

20.
This paper considers the estimation and prediction problems when lifetimes are Pareto-distributed and are collected under Type II progressive censoring with random removals, where the number of units removed at each failure time follows a Binomial distribution. The analysis is carried out within the Bayesian context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号