首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Abstract.  In a case–cohort design a random sample from the study cohort, referred as a subcohort, and all the cases outside the subcohort are selected for collecting extra covariate data. The union of the selected subcohort and all cases are referred as the case–cohort set. Such a design is generally employed when the collection of information on an extra covariate for the study cohort is expensive. An advantage of the case–cohort design over more traditional case–control and the nested case–control designs is that it provides a set of controls which can be used for multiple end-points, in which case there is information on some covariates and event follow-up for the whole study cohort. Here, we propose a Bayesian approach to analyse such a case–cohort design as a cohort design with incomplete data on the extra covariate. We construct likelihood expressions when multiple end-points are of interest simultaneously and propose a Bayesian data augmentation method to estimate the model parameters. A simulation study is carried out to illustrate the method and the results are compared with the complete cohort analysis.  相似文献   

2.
There are situations in the analysis of failure time or lifetime data where the censoring times of unfailed units are missing. The non-parametric estimator of the lifetime distribution for such data is available in literature. In this paper we consider an extension of this situation to the univariate and bivariate competing risk setups. The maximum likelihood and simple moment estimators of cause specific distribution functions in both univariate and bivariate situations are developed. A simulation study is carried out to assess the performance of the estimators. Finally, we illustrate the method with real data set.  相似文献   

3.
ABSTRACT

A Bayesian analysis for the superposition of two dependent nonhomogenous Poisson processes is studied by means of a bivariate Poisson distribution. This particular distribution presents a new likelihood function which takes into account the correlation between the two nonhomogenous Poisson processes. A numerical example using Markov Chain Monte Carlo method with data augmentation is considered.  相似文献   

4.
ABSTRACT

Elsewhere, I have promoted (univariate continuous) “transformation of scale” (ToS) distributions having densities of the form 2g?1(x)) where g is a symmetric distribution and Π is a transformation function with a special property. Here, I develop bivariate (readily multivariate) ToS distributions. Univariate ToS distributions have a transformation of random variable relationship with Azzalini-type skew-symmetric distributions; the bivariate ToS distribution here arises from marginal variable transformation of a particular form of bivariate skew-symmetric distribution. Examples are given, as are basic properties—unimodality, a covariance property, random variate generation—and connections with a bivariate inverse Gaussian distribution are pointed out.  相似文献   

5.
In this article, we consider shared frailty model with inverse Gaussian distribution as frailty distribution and log-logistic distribution (LLD) as baseline distribution for bivariate survival times. We fit this model to three real-life bivariate survival data sets. The problem of analyzing and estimating parameters of shared inverse Gaussian frailty is the interest of this article and then compare the results with shared gamma frailty model under the same baseline for considered three data sets. Data are analyzed using Bayesian approach to the analysis of clustered survival data in which there is a dependence of failure time observations within the same group. The variance component estimation provides the estimated dispersion of the random effects. We carried out a test for frailty (or heterogeneity) using Bayes factor. Model comparison is made using information criteria and Bayes factor. We observed that the shared inverse Gaussian frailty model with LLD as baseline is the better fit for all three bivariate data sets.  相似文献   

6.
In this paper, we introduce classical and Bayesian approaches for the Basu–Dhar bivariate geometric distribution in the presence of covariates and censored data. This distribution is considered for the analysis of bivariate lifetime as an alternative to some existing bivariate lifetime distributions assuming continuous lifetimes as the Block and Basu or Marshall and Olkin bivariate distributions. Maximum likelihood and Bayesian estimators are presented. Two examples are considered to illustrate the proposed methodology: an example with simulated data and an example with medical bivariate lifetime data.  相似文献   

7.
Abstract

A class of multivariate laws as an extension of univariate Weibull distribution is presented. A well known representation of the asymmetric univariate Laplace distribution is used as the starting point. This new family of distributions exhibits some similarities to the multivariate normal distribution. Properties of this class of distributions are explored including moments, correlations, densities and simulation algorithms. The distribution is applied to model bivariate exchange rate data. The fit of the proposed model seems remarkably good. Parameters are estimated and a bootstrap study performed to assess the accuracy of the estimators.  相似文献   

8.
9.
The currently existing estimation methods and goodness-of-fit tests for the Cox model mainly deal with right censored data, but they do not have direct extension to other complicated types of censored data, such as doubly censored data, interval censored data, partly interval-censored data, bivariate right censored data, etc. In this article, we apply the empirical likelihood approach to the Cox model with complete sample, derive the semiparametric maximum likelihood estimators (SPMLE) for the Cox regression parameter and the baseline distribution function, and establish the asymptotic consistency of the SPMLE. Via the functional plug-in method, these results are extended in a unified approach to doubly censored data, partly interval-censored data, and bivariate data under univariate or bivariate right censoring. For these types of censored data mentioned, the estimation procedures developed here naturally lead to Kolmogorov-Smirnov goodness-of-fit tests for the Cox model. Some simulation results are presented.  相似文献   

10.
Bivariate exponential models have often been used for the analysis of competing risks data involving two correlated risk components. Competing risks data consist only of the time to failure and cause of failure. In situations where there is positive probability of simultaneous failure, possibly the most widely used model is the Marshall–Olkin (J. Amer. Statist. Assoc. 62 (1967) 30) bivariate lifetime model. This distribution is not absolutely continuous as it involves a singularity component. However, the likelihood function based on the competing risks data is then identifiable, and any inference, Bayesian or frequentist, can be carried out in a straightforward manner. For the analysis of absolutely continuous bivariate exponential models, standard approaches often run into difficulty due to the lack of a fully identifiable likelihood (Basu and Ghosh; Commun. Statist. Theory Methods 9 (1980) 1515). To overcome the nonidentifiability, the usual frequentist approach is based on an integrated likelihood. Such an approach is implicit in Wada et al. (Calcutta Statist. Assoc. Bull. 46 (1996) 197) who proved some related asymptotic results. We offer in this paper an alternative Bayesian approach. Since systematic prior elicitation is often difficult, the present study focuses on Bayesian analysis with noninformative priors. It turns out that with an appropriate reparameterization, standard noninformative priors such as Jeffreys’ prior and its variants can be applied directly even though the likelihood is not fully identifiable. Two noninformative priors are developed that consist of Laplace's prior for nonidentifiable parameters and Laplace's and Jeffreys's priors for identifiable parameters. The resulting Bayesian procedures possess some frequentist optimality properties as well. Finally, these Bayesian methods are illustrated with analyses of a data set originating out of a lung cancer clinical trial conducted by the Eastern Cooperative Oncology Group.  相似文献   

11.
Survival data obtained from prevalent cohort study designs are often subject to length-biased sampling. Frequentist methods including estimating equation approaches, as well as full likelihood methods, are available for assessing covariate effects on survival from such data. Bayesian methods allow a perspective of probability interpretation for the parameters of interest, and may easily provide the predictive distribution for future observations while incorporating weak prior knowledge on the baseline hazard function. There is lack of Bayesian methods for analyzing length-biased data. In this paper, we propose Bayesian methods for analyzing length-biased data under a proportional hazards model. The prior distribution for the cumulative hazard function is specified semiparametrically using I-Splines. Bayesian conditional and full likelihood approaches are developed for analyzing simulated and real data.  相似文献   

12.
Abstract

Frailty models are used in survival analysis to account for unobserved heterogeneity in individual risks to disease and death. To analyze bivariate data on related survival times (e.g., matched pairs experiments, twin, or family data), shared frailty models were suggested. Shared frailty models are frequently used to model heterogeneity in survival analysis. The most common shared frailty model is a model in which hazard function is a product of random factor(frailty) and baseline hazard function which is common to all individuals. There are certain assumptions about the baseline distribution and distribution of frailty. In this paper, we introduce shared gamma frailty models with reversed hazard rate. We introduce Bayesian estimation procedure using Markov Chain Monte Carlo (MCMC) technique to estimate the parameters involved in the model. We present a simulation study to compare the true values of the parameters with the estimated values. Also, we apply the proposed model to the Australian twin data set.  相似文献   

13.
We investigate marked non-homogeneous Poisson processes using finite mixtures of bivariate normal components to model the spatial intensity function. We employ a Bayesian hierarchical framework for estimation of the parameters in the model, and propose an approach for including covariate information in this context. The methodology is exemplified through an application involving modeling of and inference for tornado occurrences.  相似文献   

14.
Because of limitations of the univariate frailty model in analysis of multivariate survival data, a bivariate frailty model is introduced for the analysis of bivariate survival data. This provides tremendous flexibility especially in allowing negative associations between subjects within the same cluster. The approach involves incorporating into the model two possibly correlated frailties for each cluster. The bivariate lognormal distribution is used as the frailty distribution. The model is then generalized to multivariate survival data with two distinguished groups and also to alternating process data. A modified EM algorithm is developed with no requirement of specification of the baseline hazards. The estimators are generalized maximum likelihood estimators with subject-specific interpretation. The model is applied to a mental health study on evaluation of health policy effects for inpatient psychiatric care.  相似文献   

15.
ABSTRACT

Motivated by a longitudinal oral health study, the Signal-Tandmobiel® study, a Bayesian approach has been developed to model misclassified ordinal response data. Two regression models have been considered to incorporate misclassification in the categorical response. Specifically, probit and logit models have been developed. The computational difficulties have been avoided by using data augmentation. This idea is exploited to derive efficient Markov chain Monte Carlo methods. Although the method is proposed for ordered categories, it can also be implemented for unordered ones in a simple way. The model performance is shown through a simulation-based example and the analysis of the motivating study.  相似文献   

16.
Several bivariate beta distributions have been proposed in the literature. In particular, Olkin and Liu [A bivariate beta distribution. Statist Probab Lett. 2003;62(4):407–412] proposed a 3 parameter bivariate beta model which Arnold and Ng [Flexible bivariate beta distributions. J Multivariate Anal. 2011;102(8):1194–1202] extend to 5 and 8 parameter models. The 3 parameter model allows for only positive correlation, while the latter models can accommodate both positive and negative correlation. However, these come at the expense of a density that is mathematically intractable. The focus of this research is on Bayesian estimation for the 5 and 8 parameter models. Since the likelihood does not exist in closed form, we apply approximate Bayesian computation, a likelihood free approach. Simulation studies have been carried out for the 5 and 8 parameter cases under various priors and tolerance levels. We apply the 5 parameter model to a real data set by allowing the model to serve as a prior to correlated proportions of a bivariate beta binomial model. Results and comparisons are then discussed.  相似文献   

17.
The analysis of covariance (ANCOVA) is often used in analyzing clinical trials that make use of “baseline” response. Unlike Crager [1987. Analysis of covariance in parallel-group clinical trials with pretreatment baseline. Biometrics 43, 895–901.], we show that for random baseline covariate, the ordinary least squares (OLS)-based ANCOVA method provides invalid unconditional inference for the test of treatment effect when heterogeneous regression exists for the baseline covariate across different treatments. To correctly address the random feature of baseline response, we propose to directly model the pre- and post-treatment measurements as repeated outcome values of a subject. This bivariate modeling method is evaluated and compared with the ANCOVA method by a simulation study under a wide variety of settings. We find that the bivariate modeling method, applying the Kenward–Roger approximation and assuming distinct general variance–covariance matrix for different treatments, performs the best in analyzing a clinical trial that makes use of random baseline measurements.  相似文献   

18.
M. C. Pardo 《Statistics》2013,47(5):1071-1091
In this paper, we focus on repeated measurement problems, comprising an interesting research area in statistics. We study longitudinal data which arise when outcomes are observed repeatedly on each experimental subject at several points. We focus on a marginal approach for this type of data with lack of independence among the observations proposed by Dale [Global cross-ratio models for bivariate, discrete, ordered responses. Biometrics. 1986;42(4):909–917] for bivariate, discrete, ordered responses. We propose an alternative estimation based on divergence measures to the full likelihood method proposed in that paper. Finally, a wide simulation study and a data example that illustrates the new methodology is provided.  相似文献   

19.
ABSTRACT

This paper considers a class of absolutely continuous bivariate exponential distributions whose univariate margins are the ordinary exponential distributions. We study different mathematical properties of the proposed model. The estimation of the parameters by maximum likelihood is discussed. Application is made to a real data example to illustrate the flexibility of theproposed distribution for data analysis.  相似文献   

20.
B. Chandrasekar 《Statistics》2013,47(2):161-165
Assuming that the random vectors X 1 and X 2 have independent bivariate Poisson distributions, the conditional distribution of X 1 given X 1?+?X 2?=?n is obtained. The conditional distribution turns out to be a finite mixture of distributions involving univariate binomial distributions and the mixing proportions are based on a bivariate Poisson (BVP) distribution. The result is used to establish two properties of a bivariate Poisson stochastic process which are the bivariate extensions of the properties for a Poisson process given by Karlin, S. and Taylor, H. M. (1975). A First Course in Stochastic Processes, Academic Press, New York.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号