首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-parameter class of discrete distributions, Abel series distributions, generated by expanding a suitable pa,rametric function into a series of Abel polynomials is discussed. An Abel series distribution occurs in fluctuations of sample functions of stochastic processes and has applications in insurance risk, queueing, dam and storage processes. The probability generating function and the factorial moments of the Abel series distributions are obtained in closed forms. It is pointed out that the name of the generalized Poisson distribution of Consul and Jain is justified by the form of its generating function. Finally it is shown that this generalized Poisson distribution is the only member of the Abel series distributions which is closed under convolution.  相似文献   

2.
Two families of closed form estimators are proposed for estimating the single parameter of the log-series distribution(LSD)and for estimating the two parameters of a generalization of the LSD distribution(GLSD)presented by Tripathi and Gupta(1985). These families are based on the recurrence relations obtained from these distributions, are of closed form, and have very high asymptotic relative effi¬ciencies. Some two-stage procedures are suggested.  相似文献   

3.
G.C. Jain  M.S.H. Khan 《Statistics》2013,47(1):153-168
This paper considers a generalization of the exponential type distributions in the class of exponential families. A characterization and a method of generating an exponential family from a given family are given. In particular the generalized gamma, the generalized Poisson, the inverse Gaussian distributions belonging to this family are discussed. The approximations of the cumulative sums for the generalized gamma and the generalized Poisson by the Chi-square are considered. Some of the results are extended to the bivariate case.  相似文献   

4.
The generalized Waring distribution is a discrete distribution with a wide spectrum of applications in areas such as accident statistics, income analysis, environmental statistics, etc. It has been used as a model that better describes such practical situations as opposed to the Poisson distribution or the negative binomial distribution. Associated to both the Poisson and negative binomial distributions are the well-known Poisson and Pólya processes. In this article, the generalized Waring process is defined. Two models have been shown to lead to the generalized Waring process. One is related to a Cox process, while the other is a compound Poisson process. The defined generalized Waring process is shown to be a stationary, but non homogenous Markov process. Several properties are studied and the intensity, individual intensity, and Chapman–Kolmogorov differential equations of it are obtained. Moreover, the Poisson and Pólya processes are shown to arise as special cases of the generalized Waring process. Using this fact, some known results and some properties of them are obtained.  相似文献   

5.
Generalized exponential distribution has been used quite effectively to model positively skewed lifetime data as an alternative to the well known Weibull or gamma distributions. In this paper we introduce an absolute continuous bivariate generalized exponential distribution by using a simple transformation from a well known bivariate exchangeable distribution. The marginal distributions of the proposed bivariate generalized exponential distributions are generalized exponential distributions. The joint probability density function and the joint cumulative distribution function can be expressed in closed forms. It is observed that the proposed bivariate distribution can be obtained using Clayton copula with generalized exponential distribution as marginals. We derive different properties of this new distribution. It is a five-parameter distribution, and the maximum likelihood estimators of the unknown parameters cannot be obtained in closed forms. We propose some alternative estimators, which can be obtained quite easily, and they can be used as initial guesses to compute the maximum likelihood estimates. One data set has been analyzed for illustrative purposes. Finally we propose some generalization of the proposed model.  相似文献   

6.
In this paper we study the minimum variance unbiased estimation in the modified power series distribution introduced by the author (1974a). Necessary and sufficient conditions for the existence of minimum variance unbiased estimate (MVUE) of the parameter based on sufficient statistics are obtained. These results are, then, applied to obtain MVUE of θr (r ≥ 1) for the generalized negative binomial and the decapitated generalized negative binomial distributions (Jain and Consul, 1971). Similar estimates are obtained for the generalized Poisson (Consul and Jain, 1973a) and the generalized logarithmic series distributions (Jain and Gupta, 1973). Several of the well-known results follow trivially from the results obtained here.  相似文献   

7.
In certain applications involving discrete data, it is sometimes found that X = 0 is observed with a frequency significantly higher than predicted by the assumed model. Zero inflated Poisson, binomial and negative binomial models have been employed in some clinical trials and in some regression analysis problems.

In this paper, we study the zero inflated modified power series distributions (IMPSD) which include among others the generalized Poisson and the generalized negative binomial distributions and hence the Poisson, binomial and negative binomial distributions. The structural properties along with the distribution of the sum of independent IMPSD variables are studied. The maximum likelihood estimation of the parameters of the model is examined and the variance-covariance matrix of the estimators is obtained. Finally, examples are presented for the generalized Poisson distribution to illustrate the results.  相似文献   

8.
Bivariate count data arise in several different disciplines (epidemiology, marketing, sports statistics just to name a few) and the bivariate Poisson distribution being a generalization of the Poisson distribution plays an important role in modelling such data. In the present paper we present a Bayesian estimation approach for the parameters of the bivariate Poisson model and provide the posterior distributions in closed forms. It is shown that the joint posterior distributions are finite mixtures of conditionally independent gamma distributions for which their full form can be easily deduced by a recursively updating scheme. Thus, the need of applying computationally demanding MCMC schemes for Bayesian inference in such models will be removed, since direct sampling from the posterior will become available, even in cases where the posterior distribution of functions of the parameters is not available in closed form. In addition, we define a class of prior distributions that possess an interesting conjugacy property which extends the typical notion of conjugacy, in the sense that both prior and posteriors belong to the same family of finite mixture models but with different number of components. Extension to certain other models including multivariate models or models with other marginal distributions are discussed.  相似文献   

9.
In this article, the authors first obtain the exact distribution of the logarithm of the product of independent generalized Gamma r.v.’s (random variables) in the form of a Generalized Integer Gamma distribution of infinite depth, where all the rate and shape parameters are well identified. Then, by a routine transformation, simple and manageable expressions for the exact distribution of the product of independent generalized Gamma r.v.’s are derived. The method used also enables us to obtain quite easily very accurate, manageable and simple near-exact distributions in the form of Generalized Near-Integer Gamma distributions. Numerical studies are carried out to assess the precision of different approximations to the exact distribution and they show the high accuracy of the approximations provided by the near-exact distributions. As particular cases of the exact distributions obtained we have the distribution of the product of independent Gamma, Weibull, Frechet, Maxwell-Boltzman, Half-Normal, Rayleigh, and Exponential distributions, as well as the exact distribution of the generalized variance, the exact distribution of discriminants or Vandermonde determinants and the exact distribution of any linear combination of generalized Gumbel distributions, as well as yet the distribution of the product of any power of the absolute value of independent Normal r.v.’s.  相似文献   

10.
In this article, posterior distribution, posterior moments, and predictive distribution for the modified power series distributions deformed at any of a support point under linex and generalized entropy loss function are derived. It is assumed that the prior information can be summarized by a uniform, Beta, two-sided power, Gamma, or generalized Pareto distributions. The obtained results are demonstrated on the generalized Poisson and the generalized negative binomial distribution deformed at a given point.  相似文献   

11.
We present sharp mean–variance bounds for expectations of kth record values based on distributions coming from restricted families of distributions. These families are defined in terms of convex or star ordering with respect to generalized Pareto distribution. The bounds for expectations of kth record values from DD, DFR, DDA, and DFRA families are special cases of our results. The bounds are derived by application of the projection method.  相似文献   

12.
Frailty models are often used to model heterogeneity in survival analysis. The most common frailty model has an individual intensity which is a product of a random factor and a basic intensity common to all individuals. This paper uses the compound Poisson distribution as the random factor. It allows some individuals to be non-susceptible, which can be useful in many settings. In some diseases, one may suppose that a number of families have an increased susceptibility due to genetic circumstances. Then, it is logical to use a frailty model where the individuals within each family have some shared factor, while individuals between families have different factors. This can be attained by randomizing the Poisson parameter in the compound Poisson distribution. To our knowledge, this is a new distribution. The power variance function distributions are used for the Poisson parameter. The subsequent appearing distributions are studied in some detail, both regarding appearance and various statistical properties. An application to infant mortality data from the Medical Birth Registry of Norway is included, where the model is compared to more traditional shared frailty models.  相似文献   

13.
We consider a wide set of statistical models that extend the Poisson distribution. These models are obtained through weighted versions of the Poisson family and can be approximated by a log-linear model. Under general conditions, we prove that the new models contain overdispersed and underdispersed distributions and that they can be parametrized with the mean and variance. A classical data set is analyzed to show the usefulness of the new models.  相似文献   

14.
A generalized form of the Poisson Distribution with two parameters will be estimated by the Bayesian technique. When one of the parameters is known, several important parametric functions will be estimated and a numerical comparison with estimates obtained by the methods of maximum likelihood and unbiased minimum variance will be drawn. The simplicity of the posterior distribution of the unknown parameter enables us to construct exact probability intervals, and to devise a statistic to test the homogeneity of several populations. When the two parameters are unknown, dependent priors are being considered. Although the posterior distributions are sensitive to the choice of the prior, the posterior estimates are very stable and we use the Pearson system of curves to construct approximate posterior confidence limits for the parameters.  相似文献   

15.
In an attempt to produce more realistic stress–strength models, this article considers the estimation of stress–strength reliability in a multi-component system with non-identical component strengths based on upper record values from the family of Kumaraswamy generalized distributions. The maximum likelihood estimator of the reliability, its asymptotic distribution and asymptotic confidence intervals are constructed. Bayes estimates under symmetric squared error loss function using conjugate prior distributions are computed and corresponding highest probability density credible intervals are also constructed. In Bayesian estimation, Lindley approximation and the Markov Chain Monte Carlo method are employed due to lack of explicit forms. For the first time using records, the uniformly minimum variance unbiased estimator and the closed form of Bayes estimator using conjugate and non-informative priors are derived for a common and known shape parameter of the stress and strength variates distributions. Comparisons of the performance of the estimators are carried out using Monte Carlo simulations, the mean squared error, bias and coverage probabilities. Finally, a demonstration is presented on how the proposed model may be utilized in materials science and engineering with the analysis of high-strength steel fatigue life data.  相似文献   

16.
In t h i s note mixture models are used to represent overdispersion relative to Poisson or binomial distributions. We flnd a sufflclent condition on the mixing distribution underich the detection of mixture departures from the Poisson or binomial adrnits a locally most powerful unbiased test. The conditions specify plynoria: relations between the variance and mean of Le glxing distribution.  相似文献   

17.
The general mixed linear model, containing both the fixed and random effects, is considered. Using gamma priors for the variance components, the conditional posterior distributions of the fixed effects and the variance components, conditional on the random effects, are obtained. Using the normal approximation for the multiple t distribution, approximations are obtained for the posterior distributions of the variance components in infinite series form. The same approximation Is used to obtain closed expressions for the moments of the variance components. An example is considered to illustrate the procedure and a numerical study examines the closeness of the approximations.  相似文献   

18.
This paper is concerned with the analysis of repeated measures count data overdispersed relative to a Poisson distribution, with the overdispersion possibly heterogeneous. To accommodate the overdispersion, the Poisson random variable is compounded with a gamma random variable, and both the mean of the Poisson and the variance of the gamma are modelled using log linear models. Maximum likelihood estimates (MLE) are then obtained. The paper also gives extended quasi-likelihood estimates for a more general class of compounding distributions which are shown to be approximations to the MLEs obtained for the gamma case. The theory is illustrated by modelling the determination of asbestos fibre intensity on membrane filters mounted on microscope slides.  相似文献   

19.
An extended version of the compound Poisson distribution is obtained by compounding the Poisson distribution with the generalized Lindley distribution. Estimation of the parameters is discussed using the method of moments and maximum likelihood estimators. Examples are given of the fitting of this distribution to data, and the fit is compared with that obtained using other distributions.  相似文献   

20.
Series evaluation of Tweedie exponential dispersion model densities   总被引:2,自引:0,他引:2  
Exponential dispersion models, which are linear exponential families with a dispersion parameter, are the prototype response distributions for generalized linear models. The Tweedie family comprises those exponential dispersion models with power mean-variance relationships. The normal, Poisson, gamma and inverse Gaussian distributions belong to theTweedie family. Apart from these special cases, Tweedie distributions do not have density functions which can be written in closed form. Instead, the densities can be represented as infinite summations derived from series expansions. This article describes how the series expansions can be summed in an numerically efficient fashion. The usefulness of the approach is demonstrated, but full machine accuracy is shown not to be obtainable using the series expansion method for all parameter values. Derivatives of the density with respect to the dispersion parameter are also derived to facilitate maximum likelihood estimation. The methods are demonstrated on two data examples and compared with with Box-Cox transformations and extended quasi-likelihoood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号