首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new four-parameter class of generalized Lindley (GL) distribution called the beta-generalized Lindley (BGL) distribution is proposed. This class of distributions contains the beta-Lindley, GL and Lindley distributions as special cases. Expansion of the density of the BGL distribution is obtained. The properties of these distributions, including hazard function, reverse hazard function, monotonicity property, shapes, moments, reliability, mean deviations, Bonferroni and Lorenz curves are derived. Measures of uncertainty such as Renyi entropy and s-entropy as well as Fisher information are presented. Method of maximum likelihood is used to estimate the parameters of the BGL and related distributions. Finally, real data examples are discussed to illustrate the applicability of this class of models.  相似文献   

2.
Several probability distributions have been proposed in the literature, especially with the aim of obtaining models that are more flexible relative to the behaviors of the density and hazard rate functions. Recently, two generalizations of the Lindley distribution were proposed in the literature: the power Lindley distribution and the inverse Lindley distribution. In this article, a distribution is obtained from these two generalizations and named as inverse power Lindley distribution. Some properties of this distribution and study of the behavior of maximum likelihood estimators are presented and discussed. It is also applied considering two real datasets and compared with the fits obtained for already-known distributions. When applied, the inverse power Lindley distribution was found to be a good alternative for modeling survival data.  相似文献   

3.
The weighted distributions provide a comprehensive understanding by adding flexibility in the existing standard distributions. In this article, we considered the weighted Lindley distribution which belongs to the class of the weighted distributions and investigated various its properties. Although, our main focus is the Bayesian analysis however, stochastic ordering, the Bonferroni and the Lorenz curves, various entropies and order statistics derivations are obtained first time for the said distribution. Different types of loss functions are considered; the Bayes estimators and their respective posterior risks are computed and compared. The different reliability characteristics including hazard function, stress and strength analysis, and mean residual life function are also analysed. The Lindley approximation and the importance sampling are described for estimation of parameters. A simulation study is designed to inspect the effect of sample size on the estimated parameters. A real-life application is also presented for the illustration purpose.  相似文献   

4.
In this paper, we are interested in the estimation of the reliability parameter R = P(X > Y) where X, a component strength, and Y, a component stress, are independent power Lindley random variables. The point and interval estimation of R, based on maximum likelihood, nonparametric and parametric bootstrap methods, are developed. The performance of the point estimate and confidence interval of R under the considered estimation methods is studied through extensive simulation. A numerical example, based on a real data, is presented to illustrate the proposed procedure.  相似文献   

5.
ABSTRACT

In this article, we consider the estimation of R = P(Y < X), when Y and X are two independent three-parameter Lindley (LI) random variables. On the basis of two independent samples, the modified maximum likelihood estimator along its asymptotic behavior and conditional likelihood-based estimator are used to estimate R. We also propose sample-based estimate of R and the associated credible interval based on importance sampling procedure. A real life data set involving the times to breakdown of an insulating fluid is presented and analyzed for illustrative purposes.  相似文献   

6.
This article introduces a new asymmetric distribution constructed by assuming the multivariate normal mean-variance mixture model. Called normal mean-variance mixture of the Lindley distribution, we derive some mathematical properties of the new distribution. Also, a feasible maximum likelihood estimation procedure using the EM algorithm and the asymptotic standard errors of parameter estimates are developed. The performance of the proposed distribution is illustrated by means of real datasets and simulation analysis.  相似文献   

7.
Abstract

The Lindley distribution has been used recently for modeling lifetime data and studying some stress-strength problems. In this paper, a new three-parameter Lindley distribution is introduced. The added location parameter offers more flexibility in fitting some real data against other common distributions. Several statistical and reliability properties are discussed. A simulation study has been carried to examine the MSE, bias, and coverage probability for the parameters. A real data set is used to illustrate the flexibility of the proposed distribution.  相似文献   

8.
ABSTRACT

A new stationary first-order autoregressive process with Lindley marginal distribution, denoted as LAR(1) is introduced. We derive the probability function for the innovation process. We consider many properties of this process, involving spectral density, some multi-step ahead conditional measures, run probabilities, stationary solution, uniqueness and ergodicity. We estimate the unknown parameters of the process using three methods of estimation and investigate properties of the estimators with some numerical results to illustrate them. Some applications of the process are discussed to two real data sets and it is shown that the LAR(1) model fits better than other known non Gaussian AR(1) models.  相似文献   

9.
ABSTRACT

In this article, a two-parameter generalized inverse Lindley distribution capable of modeling a upside-down bathtub-shaped hazard rate function is introduced. Some statistical properties of proposed distribution are explicitly derived here. The method of maximum likelihood, least square, and maximum product spacings are used for estimating the unknown model parameters and also compared through the simulation study. The approximate confidence intervals, based on a normal and a log-normal approximation, are also computed. Two algorithms are proposed for generating a random sample from the proposed distribution. A real data set is modeled to illustrate its applicability, and it is shown that our distribution fits much better than some other existing inverse distributions.  相似文献   

10.
11.
This paper introduces a new class of distributions by compounding the inverse Lindley distribution and power series distributions which is called compound inverse Lindley power series (CILPS) distributions. An important feature of this distribution is that the lifetime of the component associated with a particular risk is not observable, rather only the minimum lifetime value among all risks is observable. Further, these distributions exhibit an unimodal failure rate. Various properties of the distribution are derived. Besides, two special models of the new family are investigated. The model parameters of the two sub-models of the new family are obtained by the methods of maximum likelihood, least square, weighted least square and maximum product of spacing and compared them using the Monte Carlo simulation study. Besides, the log compound inverse Lindley regression model for censored data is proposed. Three real data sets are analyzed to illustrate the flexibility and importance of the proposed models.  相似文献   

12.
An extension of the discrete Lindley distribution is obtained by discretizing the continuous failure rate model in the generalized continuous distribution in Zakerzadeh and Dolati [Zakerzadeh, Y., & Dolati, A. (2009). Generalized Lindley distribution. Journal of Mathematical Extension, 3(2), 13–25]. The result is a generalization of the geometric distribution which presents high versatility since covariates can be included in the model.  相似文献   

13.
In the past few years, the Lindley distribution has gained popularity for modeling lifetime data as an alternative to the exponential distribution. This paper provides two new characterizations of the Lindley distribution. The first characterization is based on a relation between left truncated moments and failure rate function. The second characterization is based on a relation between right truncated moments and reversed failure rate function.  相似文献   

14.
This paper proposes a simple and flexible count data regression model which is able to incorporate overdispersion (the variance is greater than the mean) and which can be considered a competitor to the Poisson model. As is well known, this classical model imposes the restriction that the conditional mean of each count variable must equal the conditional variance. Nevertheless, for the common case of well-dispersed counts the Poisson regression may not be appropriate, while the count regression model proposed here is potentially useful. We consider an application to model counts of medical care utilization by the elderly in the USA using a well-known data set from the National Medical Expenditure Survey (1987), where the dependent variable is the number of stays after hospital admission, and where 10 explanatory variables are analysed.  相似文献   

15.
In this paper the collective risk model with Poisson–Lindley and exponential distributions as the primary and secondary distributions, respectively, is developed in a detailed way. It is applied to determine the Bayes premium used in actuarial science and also to compute the regulatory capital in the analysis of operational risk. The results are illustrated with numerous examples and compared with other approaches proposed in the literature for these questions, with considerable differences being observed.  相似文献   

16.
We define two new lifetime models called the odd log-logistic Lindley (OLL-L) and odd log-logistic Lindley Poisson (OLL-LP) distributions with various hazard rate shapes such as increasing, decreasing, upside-down bathtub, and bathtub. Various structural properties are derived. Certain characterizations of OLL-L distribution are presented. The maximum likelihood estimators of the unknown parameters are obtained. We propose a flexible cure rate survival model by assuming that the number of competing causes of the event of interest has a Poisson distribution and the time to event has an OLL-L distribution. The applicability of the new models is illustrated by means real datasets.  相似文献   

17.
We propose a modification of the moment estimators for the two-parameter weighted Lindley distribution. The modification replaces the second sample moment (or equivalently the sample variance) by a certain sample average which is bounded on the unit interval for all values in the sample space. In this method, the estimates always exist uniquely over the entire parameter space and have consistency and asymptotic normality over the entire parameter space. The bias and mean squared error of the estimators are also examined by means of a Monte Carlo simulation study, and the empirical results show the small-sample superiority in addition to the desirable large sample properties. Monte Carlo simulation study showed that the proposed modified moment estimators have smaller biases and smaller mean-square errors than the existing moment estimators and are compared favourably with the maximum likelihood estimators in terms of bias and mean-square error. Three illustrative examples are finally presented.  相似文献   

18.
A new one-parameter discrete distribution is introduced. Its mathematical properties and estimation procedures are derived. Four real data sets are used to show that the new model performs at least as well as the traditional one-parameter discrete models and other newly proposed two-parameter discrete models.  相似文献   

19.
A discrete version of the Gumbel distribution (Type-I Extreme Value distribution) has been derived by using the general approach of discretization of a continuous distribution. Important distributional and reliability properties have been explored. It has been shown that depending on the choice of parameters the proposed distribution can be positively or negatively skewed; possess long-tail(s). Log-concavity of the distribution and consequent results have been established. Estimation of parameters by method of maximum likelihood, method of moments, and method of proportions has been discussed. A method of checking model adequacy and regression type estimation based on empirical survival function has also been examined. A simulation study has been carried out to compare and check the efficacy of the three methods of estimations. The distribution has been applied to model three real count data sets from diverse application area namely, survival times in number of days, maximum annual floods data from Brazil and goal differences in English premier league, and the results show the relevance of the proposed distribution.  相似文献   

20.
V. Nekoukhou  H. Bidram 《Statistics》2013,47(4):876-887
In this paper, we shall attempt to introduce another discrete analogue of the generalized exponential distribution of Gupta and Kundu [Generalized exponential distributions, Aust. N. Z. J. Stat. 41(2) (1999), pp. 173–188], different to that of Nekoukhou et al. [A discrete analogue of the generalized exponential distribution, Comm. Stat. Theory Methods, to appear (2011)]. This new discrete distribution, which we shall call a discrete generalized exponential distribution of the second type (DGE2(α, p)), can be viewed as another generalization of the geometric distribution. We shall first study some basic distributional and moment properties, as well as order statistics distributions of this family of new distributions. Certain compounded DGE2(α, p) distributions are also discussed as the results of which some previous lifetime distributions such as that of Adamidis and Loukas [A lifetime distribution with decreasing failure rate, Statist. Probab. Lett. 39 (1998), pp. 35–42] follow as corollaries. Then, we will investigate estimation of the parameters involved. Finally, we will examine the model with a real data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号