首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new four-parameter class of generalized Lindley (GL) distribution called the beta-generalized Lindley (BGL) distribution is proposed. This class of distributions contains the beta-Lindley, GL and Lindley distributions as special cases. Expansion of the density of the BGL distribution is obtained. The properties of these distributions, including hazard function, reverse hazard function, monotonicity property, shapes, moments, reliability, mean deviations, Bonferroni and Lorenz curves are derived. Measures of uncertainty such as Renyi entropy and s-entropy as well as Fisher information are presented. Method of maximum likelihood is used to estimate the parameters of the BGL and related distributions. Finally, real data examples are discussed to illustrate the applicability of this class of models.  相似文献   

2.
Several probability distributions have been proposed in the literature, especially with the aim of obtaining models that are more flexible relative to the behaviors of the density and hazard rate functions. Recently, two generalizations of the Lindley distribution were proposed in the literature: the power Lindley distribution and the inverse Lindley distribution. In this article, a distribution is obtained from these two generalizations and named as inverse power Lindley distribution. Some properties of this distribution and study of the behavior of maximum likelihood estimators are presented and discussed. It is also applied considering two real datasets and compared with the fits obtained for already-known distributions. When applied, the inverse power Lindley distribution was found to be a good alternative for modeling survival data.  相似文献   

3.
This article introduces a new asymmetric distribution constructed by assuming the multivariate normal mean-variance mixture model. Called normal mean-variance mixture of the Lindley distribution, we derive some mathematical properties of the new distribution. Also, a feasible maximum likelihood estimation procedure using the EM algorithm and the asymptotic standard errors of parameter estimates are developed. The performance of the proposed distribution is illustrated by means of real datasets and simulation analysis.  相似文献   

4.
ABSTRACT

A new stationary first-order autoregressive process with Lindley marginal distribution, denoted as LAR(1) is introduced. We derive the probability function for the innovation process. We consider many properties of this process, involving spectral density, some multi-step ahead conditional measures, run probabilities, stationary solution, uniqueness and ergodicity. We estimate the unknown parameters of the process using three methods of estimation and investigate properties of the estimators with some numerical results to illustrate them. Some applications of the process are discussed to two real data sets and it is shown that the LAR(1) model fits better than other known non Gaussian AR(1) models.  相似文献   

5.
An extension of the discrete Lindley distribution is obtained by discretizing the continuous failure rate model in the generalized continuous distribution in Zakerzadeh and Dolati [Zakerzadeh, Y., & Dolati, A. (2009). Generalized Lindley distribution. Journal of Mathematical Extension, 3(2), 13–25]. The result is a generalization of the geometric distribution which presents high versatility since covariates can be included in the model.  相似文献   

6.
In the past few years, the Lindley distribution has gained popularity for modeling lifetime data as an alternative to the exponential distribution. This paper provides two new characterizations of the Lindley distribution. The first characterization is based on a relation between left truncated moments and failure rate function. The second characterization is based on a relation between right truncated moments and reversed failure rate function.  相似文献   

7.
In this paper the collective risk model with Poisson–Lindley and exponential distributions as the primary and secondary distributions, respectively, is developed in a detailed way. It is applied to determine the Bayes premium used in actuarial science and also to compute the regulatory capital in the analysis of operational risk. The results are illustrated with numerous examples and compared with other approaches proposed in the literature for these questions, with considerable differences being observed.  相似文献   

8.
We define two new lifetime models called the odd log-logistic Lindley (OLL-L) and odd log-logistic Lindley Poisson (OLL-LP) distributions with various hazard rate shapes such as increasing, decreasing, upside-down bathtub, and bathtub. Various structural properties are derived. Certain characterizations of OLL-L distribution are presented. The maximum likelihood estimators of the unknown parameters are obtained. We propose a flexible cure rate survival model by assuming that the number of competing causes of the event of interest has a Poisson distribution and the time to event has an OLL-L distribution. The applicability of the new models is illustrated by means real datasets.  相似文献   

9.
We propose a modification of the moment estimators for the two-parameter weighted Lindley distribution. The modification replaces the second sample moment (or equivalently the sample variance) by a certain sample average which is bounded on the unit interval for all values in the sample space. In this method, the estimates always exist uniquely over the entire parameter space and have consistency and asymptotic normality over the entire parameter space. The bias and mean squared error of the estimators are also examined by means of a Monte Carlo simulation study, and the empirical results show the small-sample superiority in addition to the desirable large sample properties. Monte Carlo simulation study showed that the proposed modified moment estimators have smaller biases and smaller mean-square errors than the existing moment estimators and are compared favourably with the maximum likelihood estimators in terms of bias and mean-square error. Three illustrative examples are finally presented.  相似文献   

10.
A new one-parameter discrete distribution is introduced. Its mathematical properties and estimation procedures are derived. Four real data sets are used to show that the new model performs at least as well as the traditional one-parameter discrete models and other newly proposed two-parameter discrete models.  相似文献   

11.
V. Nekoukhou  H. Bidram 《Statistics》2013,47(4):876-887
In this paper, we shall attempt to introduce another discrete analogue of the generalized exponential distribution of Gupta and Kundu [Generalized exponential distributions, Aust. N. Z. J. Stat. 41(2) (1999), pp. 173–188], different to that of Nekoukhou et al. [A discrete analogue of the generalized exponential distribution, Comm. Stat. Theory Methods, to appear (2011)]. This new discrete distribution, which we shall call a discrete generalized exponential distribution of the second type (DGE2(α, p)), can be viewed as another generalization of the geometric distribution. We shall first study some basic distributional and moment properties, as well as order statistics distributions of this family of new distributions. Certain compounded DGE2(α, p) distributions are also discussed as the results of which some previous lifetime distributions such as that of Adamidis and Loukas [A lifetime distribution with decreasing failure rate, Statist. Probab. Lett. 39 (1998), pp. 35–42] follow as corollaries. Then, we will investigate estimation of the parameters involved. Finally, we will examine the model with a real data set.  相似文献   

12.
This article introduces a five-parameter lifetime model called the McDonald Gompertz (McG) distribution to extend the Gompertz, generalized Gompertz, generalized exponential, beta Gompertz, and Kumaraswamy Gompertz distributions among several other models. The hazard function of new distribution can be increasing, decreasing, upside-down bathtub, and bathtub shaped. We obtain several properties of the McG distribution including moments, entropies, quantile, and generating functions. We provide the density function of the order statistics and their moments. The parameter estimation is based on the usual maximum likelihood approach. We also provide the observed information matrix and discuss inferences issues. The flexibility and usefulness of the new distribution are illustrated by means of application to two real datasets.  相似文献   

13.
This article deals with the estimation of the stress-strength parameter R = P(Y < X) when X and Y are independent Lindley random variables with different shape parameters. The uniformly minimum variance unbiased estimator has explicit expression, however, its exact or asymptotic distribution is very difficult to obtain. The maximum likelihood estimator of the unknown parameter can also be obtained in explicit form. We obtain the asymptotic distribution of the maximum likelihood estimator and it can be used to construct confidence interval of R. Different parametric bootstrap confidence intervals are also proposed. Bayes estimator and the associated credible interval based on independent gamma priors on the unknown parameters are obtained using Monte Carlo methods. Different methods are compared using simulations and one data analysis has been performed for illustrative purposes.  相似文献   

14.
For any continuous baseline G distribution, Zografos and Balakrishnan [On families of beta- and generalized gamma-generated distributions and associated inference. Statist Methodol. 2009;6:344–362] introduced the generalized gamma-generated distribution with an extra positive parameter. A new three-parameter continuous model called the gamma-linear failure rate (LFR) distribution, which extends the LFR model, is proposed and studied. Various structural properties of the new distribution are derived, including some explicit expressions for ordinary and incomplete moments, generating function, probability-weighted moments, mean deviations and Rényi and Shannon entropies. We estimate the model parameters by maximum likelihood and obtain the observed information matrix. The new model is modified to cope with possible long-term survivors in lifetime data. We illustrate the usefulness of the proposed model by means of two applications to real data.  相似文献   

15.
Skew normal distribution is an alternative distribution to the normal distribution to accommodate asymmetry. Since then extensive studies have been done on applying Azzalini’s skewness mechanism to other well-known distributions, such as skew-t distribution, which is more flexible and can better accommodate long tailed data than the skew normal one. The Kumaraswamy generalized distribution (Kw ? F) is another new class of distribution which is capable of fitting skewed data that can not be fitted well by existing distributions. Such a distribution has been widely studied and various versions of generalization of this distribution family have been introduced. In this article, we introduce a new generalization of the skew-t distribution based on the Kumaraswamy generalized distribution. The new class of distribution, which we call the Kumaraswamy skew-t (KwST) has the ability of fitting skewed, long, and heavy-tailed data and is more flexible than the skew-t distribution as it contains the skew-t distribution as a special case. Related properties of this distribution family such as mathematical properties, moments, and order statistics are discussed. The proposed distribution is applied to a real dataset to illustrate the estimation procedure.  相似文献   

16.
A new four-parameter distribution called the exponentiated power Lindley–Poisson distribution which is an extension of the power Lindley and Lindley–Poisson distributions is introduced. Statistical properties of the distribution including the shapes of the density and hazard functions, moments, entropy measures, and distribution of order statistics are given. Maximum likelihood estimation technique is used to estimate the parameters. A simulation study is conducted to examine the bias, mean square error of the maximum likelihood estimators, and width of the confidence interval for each parameter. Finally, applications to real data sets are presented to illustrate the usefulness of the proposed distribution.  相似文献   

17.
    
In this paper, we are interested in the estimation of the reliability parameter R = P(X > Y) where X, a component strength, and Y, a component stress, are independent power Lindley random variables. The point and interval estimation of R, based on maximum likelihood, nonparametric and parametric bootstrap methods, are developed. The performance of the point estimate and confidence interval of R under the considered estimation methods is studied through extensive simulation. A numerical example, based on a real data, is presented to illustrate the proposed procedure.  相似文献   

18.
We introduce a new class of distributions called the Burr XII system of densities with two extra positive parameters. We provide a comprehensive treatment of some of its mathematical properties. We estimate the model parameters by maximum likelihood. We assess the performance of the maximum likelihood estimators in terms of biases and mean squared errors by means of a simulation study. We also introduce a new family of regression models based on this system of densities. The usefulness of the proposed models is illustrated by means of three real data sets.  相似文献   

19.
A discrete distribution in which the probabilities are expressible as Laguerre polynomials is formulated in terms of a probability generating function involving three parameters. The skewness and kurtosis is given for members of the family corresponding to various parameter values. Several estimators of the parameters are proposed, including some based on minimum chi-square. All the estimators are compared on the basis of asymptotic relative efficiency.  相似文献   

20.
Cooray and Ananda (2008 Cooray, K., Ananda, M.M.A. (2008). A Generalization of the half-normal distribution with applications to lifetime data. Commun. Stat. - Theory Methods 37:13231337.[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]) pioneered a lifetime model commonly used in reliability studies. Based on this distribution, we propose a new model called the odd log-logistic generalized half-normal distribution for describing fatigue lifetime data. Various of its structural properties are derived. We discuss the method of maximum likelihood to fit the model parameters. For different parameter settings and sample sizes, some simulation studies compare the performance of the new lifetime model. It can be very useful, and its superiority is illustrated by means of a real dataset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号