首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we study some mathematical properties of the beta Weibull (BW) distribution, which is a quite flexible model in analysing positive data. It contains the Weibull, exponentiated exponential, exponentiated Weibull and beta exponential distributions as special sub-models. We demonstrate that the BW density can be expressed as a mixture of Weibull densities. We provide their moments and two closed-form expressions for their moment-generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, reliability and two entropies. The density of the BW-order statistics is a mixture of Weibull densities and two closed-form expressions are derived for their moments. The estimation of the parameters is approached by two methods: moments and maximum likelihood. We compare the performances of the estimates obtained from both the methods by simulation. The expected information matrix is derived. For the first time, we introduce a log-BW regression model to analyse censored data. The usefulness of the BW distribution is illustrated in the analysis of three real data sets.  相似文献   

2.
The Weibull distribution is one of the most important distributions in reliability. For the first time, we introduce the beta exponentiated Weibull distribution which extends recent models by Lee et al. [Beta-Weibull distribution: some properties and applications to censored data, J. Mod. Appl. Statist. Meth. 6 (2007), pp. 173–186] and Barreto-Souza et al. [The beta generalized exponential distribution, J. Statist. Comput. Simul. 80 (2010), pp. 159–172]. The new distribution is an important competitive model to the Weibull, exponentiated exponential, exponentiated Weibull, beta exponential and beta Weibull distributions since it contains all these models as special cases. We demonstrate that the density of the new distribution can be expressed as a linear combination of Weibull densities. We provide the moments and two closed-form expressions for the moment-generating function. Explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, reliability and entropies. The density of the order statistics can also be expressed as a linear combination of Weibull densities. We obtain the moments of the order statistics. The expected information matrix is derived. We define a log-beta exponentiated Weibull regression model to analyse censored data. The estimation of the parameters is approached by the method of maximum likelihood. The usefulness of the new distribution to analyse positive data is illustrated in two real data sets.  相似文献   

3.
A five-parameter extension of the Weibull distribution capable of modelling a bathtub-shaped hazard rate function is introduced and studied. The beauty and importance of the new distribution lies in its ability to model both monotone and non-monotone failure rates that are quite common in lifetime problems and reliability. The proposed distribution has a number of well-known lifetime distributions as special sub-models, such as the Weibull, extreme value, exponentiated Weibull, generalized Rayleigh and modified Weibull (MW) distributions, among others. We obtain quantile and generating functions, mean deviations, Bonferroni and Lorenz curves and reliability. We provide explicit expressions for the density function of the order statistics and their moments. For the first time, we define the log-Kumaraswamy MW regression model to analyse censored data. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is determined. Two applications illustrate the potentiality of the proposed distribution.  相似文献   

4.
A new distribution called the beta generalized exponential distribution is proposed. It includes the beta exponential and generalized exponential (GE) distributions as special cases. We provide a comprehensive mathematical treatment of this distribution. The density function can be expressed as a mixture of generalized exponential densities. This is important to obtain some mathematical properties of the new distribution in terms of the corresponding properties of the GE distribution. We derive the moment generating function (mgf) and the moments, thus generalizing some results in the literature. Expressions for the density, mgf and moments of the order statistics are also obtained. We discuss estimation of the parameters by maximum likelihood and obtain the information matrix that is easily numerically determined. We observe in one application to a real skewed data set that this model is quite flexible and can be used effectively in analyzing positive data in place of the beta exponential and GE distributions.  相似文献   

5.
A four-parameter extension of the generalized gamma distribution capable of modelling a bathtub-shaped hazard rate function is defined and studied. The beauty and importance of this distribution lies in its ability to model monotone and non-monotone failure rate functions, which are quite common in lifetime data analysis and reliability. The new distribution has a number of well-known lifetime special sub-models, such as the exponentiated Weibull, exponentiated generalized half-normal, exponentiated gamma and generalized Rayleigh, among others. We derive two infinite sum representations for its moments. We calculate the density of the order statistics and two expansions for their moments. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is obtained. Finally, a real data set from the medical area is analysed.  相似文献   

6.
The odd Weibull distribution is a three-parameter generalization of the Weibull and the inverse Weibull distributions having rich density and hazard shapes for modeling lifetime data. This paper explored the odd Weibull parameter regions having finite moments and examined the relation to some well-known distributions based on skewness and kurtosis functions. The existence of maximum likelihood estimators have shown with complete data for any sample size. The proof for the uniqueness of these estimators is given only when the absolute value of the second shape parameter is between zero and one. Furthermore, elements of the Fisher information matrix are obtained based on complete data using a single integral representation which have shown to exist for any parameter values. The performance of the odd Weibull distribution over various density and hazard shapes is compared with generalized gamma distribution using two different test statistics. Finally, analysis of two data sets has been performed for illustrative purposes.  相似文献   

7.
We propose a new distribution, the so-called beta-Weibull geometric distribution, whose failure rate function can be decreasing, increasing or an upside-down bathtub. This distribution contains special sub-models the exponential geometric [K. Adamidis and S. Loukas, A lifetime distribution with decreasing failure rate, Statist. Probab. Lett. 39 (1998), pp. 35–42], beta exponential [S. Nadarajah and S. Kotz, The exponentiated type distributions, Acta Appl. Math. 92 (2006), pp. 97–111; The beta exponential distribution, Reliab. Eng. Syst. Saf. 91 (2006), pp. 689–697], Weibull geometric [W. Barreto-Souza, A.L. de Morais, and G.M. Cordeiro, The Weibull-geometric distribution, J. Stat. Comput. Simul. 81 (2011), pp. 645–657], generalized exponential geometric [R.B. Silva, W. Barreto-Souza, and G.M. Cordeiro, A new distribution with decreasing, increasing and upside-down bathtub failure rate, Comput. Statist. Data Anal. 54 (2010), pp. 935–944; G.O. Silva, E.M.M. Ortega, and G.M. Cordeiro, The beta modified Weibull distribution, Lifetime Data Anal. 16 (2010), pp. 409–430] and beta Weibull [S. Nadarajah, G.M. Cordeiro, and E.M.M. Ortega, General results for the Kumaraswamy-G distribution, J. Stat. Comput. Simul. (2011). DOI: 10.1080/00949655.2011.562504] distributions, among others. The density function can be expressed as a mixture of Weibull density functions. We derive expansions for the moments, generating function, mean deviations and Rénvy entropy. The parameters of the proposed model are estimated by maximum likelihood. The model fitting using envelops was conducted. The proposed distribution gives a good fit to the ozone level data in New York.  相似文献   

8.
Lifetimes of modern mechanic or electronic units usually exhibit bathtub-shaped failure rates. An appropriate probability distribution to model such data is the modified Weibull distribution proposed by Lai et al. [15]. This distribution has both the two-parameter Weibull and type-1 extreme value distribution as special cases. It is able to model lifetime data with monotonic and bathtub-shaped failure rates, and thus attracts some interest among researchers because of this property. In this paper, the procedure of obtaining the maximum likelihood estimates (MLEs) of the parameters for progressively type-2 censored and complete samples are studied. Existence and uniqueness of the MLEs are proved.  相似文献   

9.
In this paper, we discuss some theoretical results and properties of the discrete Weibull distribution, which was introduced by Nakagawa and Osaki [The discrete Weibull distribution. IEEE Trans Reliab. 1975;24:300–301]. We study the monotonicity of the probability mass, survival and hazard functions. Moreover, reliability, moments, p-quantiles, entropies and order statistics are also studied. We consider likelihood-based methods to estimate the model parameters based on complete and censored samples, and to derive confidence intervals. We also consider two additional methods to estimate the model parameters. The uniqueness of the maximum likelihood estimate of one of the parameters that index the discrete Weibull model is discussed. Numerical evaluation of the considered model is performed by Monte Carlo simulations. For illustrative purposes, two real data sets are analyzed.  相似文献   

10.
This paper studies the two-parameter, left-truncated Weibull distribution (LTWD) with known, fixed, positive truncation pointT. Important hitherto unknown statistical properties of the LTWD are derived. The asymptotic theory of the maximum likelihood estimates (MLEs) is invoked to develop parameter confidence intervals and regions. Numerical methods are described for computing the MLEs and for evaluating the exact, asymptotic variances and covariances of the MLEs. An illustrative example is given.  相似文献   

11.
    
Many research papers in statistical literature address the estimation of the reliability parameter in stress‐strength models, considering different types of distributions for stress and for strength. We have found that for many of these distributions, their corresponding profile likelihood functions of the reliability parameter can be grouped in a family of likelihood functions, with a simple algebraic structure that facilitates making inferences about this parameter. The novel family of likelihood functions, proposed here, maximum likelihood estimation procedures and suitable reparameterizations, were used to obtain a simple closed‐form expression for the likelihood confidence interval of the reliability parameter. This new approach is particularly useful when small and/or unequal sample sizes are involved. Simulation studies for some distributions were carried out to illustrate the performance of the likelihood confidence intervals for the reliability parameter, and adequate coverage frequencies were obtained. The simplicity of our unifying proposal is shown here using three stress‐strength distributions that have been analysed individually in statistical literature. However, there are many distributions for which inferences about the reliability parameter could be easily obtained using the proposed family. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Weibull distributions have received wide ranging applications in many areas including reliability, hydrology and communication systems. Many estimation methods have been proposed for Weibull distributions. But there has not been a comprehensive comparison of these estimation methods. Most studies have focused on comparing the maximum likelihood estimation (MLE) with one of the other approaches. In this paper, we first propose an L-moment estimator for the Weibull distribution. Then, a comprehensive comparison is made of the following methods: the method of maximum likelihood estimation (MLE), the method of logarithmic moments, the percentile method, the method of moments and the method of L-moments.  相似文献   

13.
In this paper, the Markov chain Monte Carlo (MCMC) method is used to estimate the parameters of a modified Weibull distribution based on a complete sample. While maximum-likelihood estimation (MLE) is the most used method for parameter estimation, MCMC has recently emerged as a good alternative. When applied to parameter estimation, MCMC methods have been shown to be easy to implement computationally, the estimates always exist and are statistically consistent, and their probability intervals are convenient to construct. Details of applying MCMC to parameter estimation for the modified Weibull model are elaborated and a numerical example is presented to illustrate the methods of inference discussed in this paper. To compare MCMC with MLE, a simulation study is provided, and the differences between the estimates obtained by the two algorithms are examined.  相似文献   

14.
In this paper, we introduce a new distribution generated by gamma random variables. We show that this distribution includes as a special case the distribution of the lower record value from a sequence of i.i.d. random variables from a population with the exponentiated (generalized) exponential distribution. The properties of this distribution are derived and the estimation of the model parameters is discussed. Some applications to real data sets are finally presented for illustration.  相似文献   

15.
    
In this paper, we present a formal simple proof for the existence and uniqueness of the maximum likelihood estimates (MLEs) of the parameters of a general class of exponentiated distributions. This class includes the exponentiated (general) exponential, exponentiated Rayleigh (scaled Burr X) and exponentiated Pareto distributions, as special cases, and thus the proof given here establishes the existence and uniqueness of the MLEs for these important special cases as well.  相似文献   

16.
Abstract

In this article, we introduce a new distribution for modeling positive data sets with high kurtosis, the modified slashed generalized exponential distribution. The new model can be seen as a modified version of the slashed generalized exponential distribution. It arises as a quotient of two independent random variables, one being a generalized exponential distribution in the numerator and a power of the exponential distribution in the denominator. We studied various structural properties (such as the stochastic representation, density function, hazard rate function and moments) and discuss moment and maximum likelihood estimating approaches. Two real data sets are considered in which the utility of the new model in the analysis with high kurtosis is illustrated.  相似文献   

17.
B   rdal   eno  lu 《Journal of applied statistics》2005,32(10):1051-1066
It is well known that the least squares method is optimal only if the error distributions are normally distributed. However, in practice, non-normal distributions are more prevalent. If the error terms have a non-normal distribution, then the efficiency of least squares estimates and tests is very low. In this paper, we consider the 2k factorial design when the distribution of error terms are Weibull W(p,σ). From the methodology of modified likelihood, we develop robust and efficient estimators for the parameters in 2k factorial design. F statistics based on modified maximum likelihood estimators (MMLE) for testing the main effects and interaction are defined. They are shown to have high powers and better robustness properties as compared to the normal theory solutions. A real data set is analysed.  相似文献   

18.
Generalized exponential, geometric extreme exponential and Weibull distributions are three non-negative skewed distributions that are suitable for analysing lifetime data. We present diagnostic tools based on the likelihood ratio test (LRT) and the minimum Kolmogorov distance (KD) method to discriminate between these models. Probability of correct selection has been calculated for each model and for several combinations of shape parameters and sample sizes using Monte Carlo simulation. Application of LRT and KD discrimination methods to some real data sets has also been studied.  相似文献   

19.
In Bayesian Inference it is often desirable to have a posterior density reflecting mainly the information from sample data. To achieve this purpose it is important to employ prior densities which add little information to the sample. We have in the literature many such prior densities, for example, Jeffreys (1967 Jeffreys , H. ( 1967 ). Theory of Probability , 3rd rev. ed. . London : Oxford University Press . [Google Scholar]), Lindley (1956 Lindley , D. V. ( 1956 ). On a measure of the information provided by an experiment . Ann. Mathemat. Statist. 27 : 9861005 .[Crossref] [Google Scholar]); (1961 Lindley , D. V. ( 1961 ). The use of prior probability distributions in statistical inference and decisions . In: Neyman , J. , ed. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability . Vol. 1. Berkeley : University of California Press , pp. 453468 . [Google Scholar]), Hartigan (1964 Hartigan , J. ( 1964 ). Invariant priors distributions . Ann. Mathemat. Statist. 35 : 836845 .[Crossref] [Google Scholar]), Bernardo (1979 Bernardo , J. M. ( 1979 ). Reference posterior distributions for Bayesian inference . J. Roy. Statist. Soc. 41 ( 2 ): 113147 . [Google Scholar]), Zellner (1984 Zellner , A. ( 1984 ). Maximal Data Information Prior Distributions, Basic Issues in Econometrics . Chicago : University of Chicago Press . [Google Scholar]), Tibshirani (1989 Tibshirani , R. ( 1989 ). Noninformative priors for one parameters of many . Biometrika 76 : 604608 .[Crossref], [Web of Science ®] [Google Scholar]), etc. In the present article, we compare the posterior densities of the reliability function by using Jeffreys, the maximal data information (Zellner, 1984 Zellner , A. ( 1984 ). Maximal Data Information Prior Distributions, Basic Issues in Econometrics . Chicago : University of Chicago Press . [Google Scholar]), Tibshirani's, and reference priors for the reliability function R(t) in a Weibull distribution.  相似文献   

20.
The generalized exponential distribution proposed by Gupta and Kundu [Gupta, R.D and Kundu, D., 1999, Generalized exponential distributions. Australian and New Zealand Journal of Statistics, 41(2), 173–188.] is an important lifetime distribution in survival analysis. In this paper, we consider the maximum likelihood estimation procedure of the parameters of the generalized exponential distribution when the data are left censored. We obtain the maximum likelihood estimators of the unknown para-meters and the Fisher information matrix. Simulation studies are carried out to observe the performance of the estimators in small sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号