首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this paper is two-fold. First, we review recent estimators for censored regression and sample selection panel data models with unobservable individual specific effects, and show how the idea behind these estimators can be used to construct estimators for a variety of other Tobit-type models. The estimators presented in this paper are semiparametric, in the sense that they do not require the parametrization of the distribution of the unobservables. The second aim of the paper is to introduce a new class of estimators for the censored regression model. The advantage of the new estimators is that they can be applied under a stationarity assumption on the transitory error terms, which is weaker than the exchangeability assumption that is usually made in this literature. A similar generalization does not seem feasible for the estimators of the other models that are considered.  相似文献   

2.
The aim of this paper is two-fold. First, we review recent estimators for censored regression and sample selection panel data models with unobservable individual specific effects, and show how the idea behind these estimators can be used to construct estimators for a variety of other Tobit-type models. The estimators presented in this paper are semiparametric, in the sense that they do not require the parametrization of the distribution of the unobservables. The second aim of the paper is to introduce a new class of estimators for the censored regression model. The advantage of the new estimators is that they can be applied under a stationarity assumption on the transitory error terms, which is weaker than the exchangeability assumption that is usually made in this literature. A similar generalization does not seem feasible for the estimators of the other models that are considered.  相似文献   

3.
This article considers a class of estimators for the location and scale parameters in the location-scale model based on ‘synthetic data’ when the observations are randomly censored on the right. The asymptotic normality of the estimators is established using counting process and martingale techniques when the censoring distribution is known and unknown, respectively. In the case when the censoring distribution is known, we show that the asymptotic variances of this class of estimators depend on the data transformation and have a lower bound which is not achievable by this class of estimators. However, in the case that the censoring distribution is unknown and estimated by the Kaplan–Meier estimator, this class of estimators has the same asymptotic variance and attains the lower bound for variance for the case of known censoring distribution. This is different from censored regression analysis, where asymptotic variances depend on the data transformation. Our method has three valuable advantages over the method of maximum likelihood estimation. First, our estimators are available in a closed form and do not require an iterative algorithm. Second, simulation studies show that our estimators being moment-based are comparable to maximum likelihood estimators and outperform them when sample size is small and censoring rate is high. Third, our estimators are more robust to model misspecification than maximum likelihood estimators. Therefore, our method can serve as a competitive alternative to the method of maximum likelihood in estimation for location-scale models with censored data. A numerical example is presented to illustrate the proposed method.  相似文献   

4.
We study the performance of six proposed bivariate survival curve estimators on simulated right censored data. The performance of the estimators is compared for data generated by three bivariate models with exponential marginal distributions. The estimators are compared in their ability to estimate correlations and survival functions probabilities. Simulated data results are presented so that the proposed estimators in this relatively new area of analysis can be explicitly compared to the known distribution of the data and the parameters of the underlying model. The results show clear differences in the performance of the estimators.  相似文献   

5.
Abstract

Statistical distributions are very useful in describing and predicting real world phenomena. In many applied areas there is a clear need for the extended forms of the well-known distributions. Generally, the new distributions are more flexible to model real data that present a high degree of skewness and kurtosis. The choice of the best-suited statistical distribution for modeling data is very important.

In this article, we proposed an extended generalized Gompertz (EGGo) family of EGGo. Certain statistical properties of EGGo family including distribution shapes, hazard function, skewness, limit behavior, moments and order statistics are discussed. The flexibility of this family is assessed by its application to real data sets and comparison with other competing distributions. The maximum likelihood equations for estimating the parameters based on real data are given. The performances of the estimators such as maximum likelihood estimators, least squares estimators, weighted least squares estimators, Cramer-von-Mises estimators, Anderson-Darling estimators and right tailed Anderson-Darling estimators are discussed. The likelihood ratio test is derived to illustrate that the EGGo distribution is better than other nested models in fitting data set or not. We use R software for simulation in order to perform applications and test the validity of this model.  相似文献   

6.
Summary. We examine three pattern–mixture models for making inference about parameters of the distribution of an outcome of interest Y that is to be measured at the end of a longitudinal study when this outcome is missing in some subjects. We show that these pattern–mixture models also have an interpretation as selection models. Because these models make unverifiable assumptions, we recommend that inference about the distribution of Y be repeated under a range of plausible assumptions. We argue that, of the three models considered, only one admits a parameterization that facilitates the examination of departures from the assumption of sequential ignorability. The three models are nonparametric in the sense that they do not impose restrictions on the class of observed data distributions. Owing to the curse of dimensionality, the assumptions that are encoded in these models are sufficient for identification but not for inference. We describe additional flexible and easily interpretable assumptions under which it is possible to construct estimators that are well behaved with moderate sample sizes. These assumptions define semiparametric models for the distribution of the observed data. We describe a class of estimators which, up to asymptotic equivalence, comprise all the consistent and asymptotically normal estimators of the parameters of interest under the postulated semiparametric models. We illustrate our methods with the analysis of data from a randomized clinical trial of contracepting women.  相似文献   

7.
Reduced-rank regression is a dimensionality reduction method with many applications. The asymptotic theory for reduced rank estimators of parameter matrices in multivariate linear models has been studied extensively. In contrast, few theoretical results are available for reduced-rank multivariate generalized linear models. We develop M-estimation theory for concave criterion functions that are maximized over parameter spaces that are neither convex nor closed. These results are used to derive the consistency and asymptotic distribution of maximum likelihood estimators in reduced-rank multivariate generalized linear models, when the response and predictor vectors have a joint distribution. We illustrate our results in a real data classification problem with binary covariates.  相似文献   

8.
The paper examines alternative estimators for the mean of a spatial process where observations are not independent. Properties of the sample mean and its standard error are contrasted with those of maximum likelihood estimators derived for three spatial models. The information loss caused by spatial dependency in the data is examined. The distribution theory for the estimators is reviewed and the paper concludes with an empirical example illustrating the properties of the estimators and the practical benefits of the maximum likelihood procedure.  相似文献   

9.
Abstract

We study asymptotics of parameter estimates in conditional heteroscedastic models. The estimators considered are those obtained by minimizing certain functionals and those obtained by solving estimation equations. We establish consistency and derive asymptotic limit laws of the estimators. Condition under which the limit law is normal is studied. Further, bootstrap for these estimators is discussed. The limiting distribution of the estimators is not necessary always normal, and we present a real data example to illustrate this.  相似文献   

10.
A number of statistical problems use the moment generating function (mgf) for purposes other than determining the moments of a distribution. If the distribution is not completely specified, then the mgf must be estimated from available data. The empirical mgf makes no assumptions concerning the underlying distribution except for the existence of the mgf. In contrast to the nonparametric approach provided by the empirical mgf, alternative estimators can be formed based on an assumed parametric model. Comparison of these approaches is considered for two parametric models; the normal and a one parameter gamma. Comparison criteria are efficiency and empirical confidence interval coverage. In general the parametric estimators outperform the empirical mgf when the model is correct. The comparisons are extended to underlying models which are two component mixtures from the distributional family assumed by the parametric estimators. Under the mixture models the superiority of the parametric estimator depends upon the model, value of the argument of the mgf, and the comparison criterion. The empirical mgf is the better estimator in some cases.  相似文献   

11.
This paper is concerned with model selection and model averaging procedures for partially linear single-index models. The profile least squares procedure is employed to estimate regression coefficients for the full model and submodels. We show that the estimators for submodels are asymptotically normal. Based on the asymptotic distribution of the estimators, we derive the focused information criterion (FIC), formulate the frequentist model average (FMA) estimators and construct proper confidence intervals for FMA estimators and FIC estimator, a special case of FMA estimators. Monte Carlo studies are performed to demonstrate the superiority of the proposed method over the full model, and over models chosen by AIC or BIC in terms of coverage probability and mean squared error. Our approach is further applied to real data from a male fertility study to explore potential factors related to sperm concentration and estimate the relationship between sperm concentration and monobutyl phthalate.  相似文献   

12.
Nonparametric estimation and inferences of conditional distribution functions with longitudinal data have important applications in biomedical studies, such as epidemiological studies and longitudinal clinical trials. Estimation approaches without any structural assumptions may lead to inadequate and numerically unstable estimators in practice. We propose in this paper a nonparametric approach based on time-varying parametric models for estimating the conditional distribution functions with a longitudinal sample. Our model assumes that the conditional distribution of the outcome variable at each given time point can be approximated by a parametric model after local Box–Cox transformation. Our estimation is based on a two-step smoothing method, in which we first obtain the raw estimators of the conditional distribution functions at a set of disjoint time points, and then compute the final estimators at any time by smoothing the raw estimators. Applications of our two-step estimation method have been demonstrated through a large epidemiological study of childhood growth and blood pressure. Finite sample properties of our procedures are investigated through a simulation study. Application and simulation results show that smoothing estimation from time-variant parametric models outperforms the existing kernel smoothing estimator by producing narrower pointwise bootstrap confidence band and smaller root mean squared error.  相似文献   

13.
In this paper, we consider robust M-estimation of time series models with both symmetric and asymmetric forms of heteroscedasticity related to the GARCH and GJR models. The class of estimators includes least absolute deviation (LAD), Huber’s, Cauchy and B-estimator as well as the well-known quasi maximum likelihood estimator (QMLE). Extensive simulations are used to check the relative performance of these estimators in both models and the weighted resampling methods are used to approximate the sampling distribution of M-estimators. Our study indicates that there are estimators that can perform better than QMLE and even outperform robust estimator such as LAD when the error distribution is heavy-tailed. These estimators are also applied to real data sets.  相似文献   

14.
This article derives explicit expressions for the asymptotic variances of the maximum likelihood and continuously-updated GMM estimators in models that may not satisfy the fundamental asset-pricing restrictions in population. The proposed misspecification-robust variance estimators allow the researcher to conduct valid inference on the model parameters even when the model is rejected by the data. While the results for the maximum likelihood estimator are only applicable to linear asset-pricing models, the asymptotic distribution of the continuously-updated GMM estimator is derived for general, possibly nonlinear, models. The large corrections in the asymptotic variances, that arise from explicitly incorporating model misspecification in the analysis, are illustrated using simulations and an empirical application.  相似文献   

15.

Function-based hypothesis testing in two-sample location-scale models has been addressed for uncensored data using the empirical characteristic function. A test of adequacy in censored two-sample location-scale models is lacking, however. A plug-in empirical likelihood approach is used to introduce a test statistic, which, asymptotically, is not distribution free. Hence for practical situations bootstrap is necessary for performing the test. A multiplier bootstrap and a model appropriate resampling procedure are given to approximate critical values from the null asymptotic distribution. Although minimum distance estimators of the location and scale are deployed for the plug-in, any consistent estimators can be used. Numerical studies are carried out that validate the proposed testing method, and real example illustrations are given.

  相似文献   

16.
In recent years, there has been an increased interest in combining probability and nonprobability samples. Nonprobability sample are cheaper and quicker to conduct but the resulting estimators are vulnerable to bias as the participation probabilities are unknown. To adjust for the potential bias, estimation procedures based on parametric or nonparametric models have been discussed in the literature. However, the validity of the resulting estimators relies heavily on the validity of the underlying models. Also, nonparametric approaches may suffer from the curse of dimensionality and poor efficiency. We propose a data integration approach by combining multiple outcome regression models and propensity score models. The proposed approach can be used for estimating general parameters including totals, means, distribution functions, and percentiles. The resulting estimators are multiply robust in the sense that they remain consistent if all but one model are misspecified. The asymptotic properties of point and variance estimators are established. The results from a simulation study show the benefits of the proposed method in terms of bias and efficiency. Finally, we apply the proposed method using data from the Korea National Health and Nutrition Examination Survey and data from the National Health Insurance Sharing Services.  相似文献   

17.
Population size estimation with discrete or nonparametric mixture models is considered, and reliable ways of construction of the nonparametric mixture model estimator are reviewed and set into perspective. Construction of the maximum likelihood estimator of the mixing distribution is done for any number of components up to the global nonparametric maximum likelihood bound using the EM algorithm. In addition, the estimators of Chao and Zelterman are considered with some generalisations of Zelterman’s estimator. All computations are done with CAMCR, a special software developed for population size estimation with mixture models. Several examples and data sets are discussed and the estimators illustrated. Problems using the mixture model-based estimators are highlighted.  相似文献   

18.
In this paper, we consider non‐parametric copula inference under bivariate censoring. Based on an estimator of the joint cumulative distribution function, we define a discrete and two smooth estimators of the copula. The construction that we propose is valid for a large range of estimators of the distribution function and therefore for a large range of bivariate censoring frameworks. Under some conditions on the tails of the distributions, the weak convergence of the corresponding copula processes is obtained in l([0,1]2). We derive the uniform convergence rates of the copula density estimators deduced from our smooth copula estimators. Investigation of the practical behaviour of these estimators is performed through a simulation study and two real data applications, corresponding to different censoring settings. We use our non‐parametric estimators to define a goodness‐of‐fit procedure for parametric copula models. A new bootstrap scheme is proposed to compute the critical values.  相似文献   

19.
In this paper, we investigate the construction of compromise estimators of location and scale, by averaging over several models selected among a specified large set of possible models. The weight given to each distribution is based on the profile likelihood, which leads to a notion of distance between distributions as we study the asymptotic behaviour of such estimators. The selection of the models is made in a minimax way, in order to choose distributions that are close to any possible distribution. We also present simulation results of such compromise estimators based on contaminated Gaussian and Student's t distributions.  相似文献   

20.
Abstract

The locally weighted censored quantile regression approach is proposed for panel data models with fixed effects, which allows for random censoring. The resulting estimators are obtained by employing the fixed effects quantile regression method. The weights are selected either parametrically, semi-parametrically or non-parametrically. The large panel data asymptotics are used in an attempt to cope with the incidental parameter problem. The consistency and limiting distribution of the proposed estimator are also derived. The finite sample performance of the proposed estimators are examined via Monte Carlo simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号